Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 660: 124298, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38825172

RESUMO

One of the most common forms of controlled release technology for oral drug delivery comprises an active ingredient dispersed in a hydrophilic matrix forming polymer such as hydroxypropyl methylcellulose (HPMC), which is tableted via direct compression. However, HPMC may pose problems in direct compression due to its poor flowability. Hence, mannitol syrup was spray-coated over fluidized HPMC particles to produce co-processed HPMC-mannitol at ratios of 20:80, 50:50, and 70:30. Particles of pure HPMC, co-processed HPMC-mannitol, and their respective physical mixtures were evaluated for powder flowability, compression profiles, and controlled release performance. It was found that co-processed HPMC-mannitol consisted of particles with improved flow compared to pure HPMC particles. Sufficiently strong tablets of >2 MPa could be produced at moderate to high compression forces of 150-200 MPa. The dissolution profile could be tuned to obtain desired release profiles by altering HPMC-mannitol ratios. Co-processed HPMC-mannitol offers an interesting addition to the formulator's toolbox in the design of controlled release formulations for direct compression.


Assuntos
Preparações de Ação Retardada , Liberação Controlada de Fármacos , Excipientes , Derivados da Hipromelose , Manitol , Comprimidos , Manitol/química , Derivados da Hipromelose/química , Excipientes/química , Preparações de Ação Retardada/química , Solubilidade , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Pós
2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675488

RESUMO

Monoclonal antibodies require careful formulation due to their inherent stability limitations. Polysorbates are commonly used to stabilize mAbs, but they are prone to degradation, which results in unwanted impurities. KLEPTOSE® HPßCD (hydroxypropyl beta-cyclodextrin) has functioned as a stable stabilizer for protein formulations in our previous research. The current study investigates the collaborative impact of combining polysorbates and HPßCD as excipients in protein formulations. The introduction of HPßCD in formulations showed it considerably reduced aggregation in two model proteins, bevacizumab and ipilimumab, following exposure to various stress conditions. The diffusion interaction parameter revealed a reduction in protein-protein interactions by HPßCD. In bevacizumab formulations, the subvisible particle counts per 0.4 mL of samples in commercial formulations vs. formulations containing both HPßCD and polysorbates subjected to distinct stressors were as follows: agitation, 87,308 particles vs. 15,350 particles; light, 25,492 particles vs. 6765 particles; and heat, 1775 particles vs. 460 particles. Isothermal titration calorimetry (ITC) measurement indicated a weak interaction between PS 80 and HPßCD, with a KD value of 74.7 ± 7.5 µM and binding sites of 5 × 10-3. Surface tension measurements illustrated that HPßCD enhanced the surface activity of polysorbates. The study suggests that combining these excipients can improve mAb stability in formulations, offering an alternative for the biopharmaceutical industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA