Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biol Int ; 47(11): 1767-1781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37671447

RESUMO

Breast cancer is a commonly known cancer type and the leading cause of cancer death among females. One of the unresolved problems in cancer treatment is the increased resistance of the tumor to existing treatments, which is a direct result of apoptotic defects. Calculating an alternative to cell death (autophagy) may be the ultimate solution to maximizing cancer cell death. Our aim in this study was to investigate the potential of free nanoparticles (un-drug-loaded) in the induction or inhibition of autophagy and consider this effect on the therapy process. When the studies met the inclusion criteria, the full texts of all relevant articles were carefully examined and classified. Of the 25 articles included in the analysis, carried out on MCF-7, MDA-MB-231, MDA-MB-231-TXSA, MDA-MB-468, SUM1315, and 4T1 cell lines. Twenty in vitro studies and five in vivo/in vitro studies applied five different autophagy tests: Acridine orange, western blot, Cyto-ID Autophagy Detection Kit, confocal microscope, and quantitative polymerase chain reaction. Nanoparticles (NPs) in the basic format, including Ag, Au, Y2 O3 , Se, ZnO, CuO, Al, Fe, vanadium pentoxide, and liposomes, were prepared in the included articles. Three behaviors of NPs related to autophagy were seen: induction, inhibition, and no action. Screened and presented data suggest that most of the involved free NPs (metallic NPs) in this systematic review had reactive oxygen species-mediated pathways with autophagy induction (36%). Also, PI3K/Akt/mTOR and MAPK/ERK signaling pathways were mentioned in just four studies (16%). An impressive percentage of studies (31%) did not examine the NP-related autophagy pathway.

2.
Chem Biol Drug Des ; 101(5): 1096-1112, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34480511

RESUMO

The third most common malignancy has been identified as Colorectal cancer (CRC) that conducive to death in most cases. Chemoresistance is a common obstacle to CRC treatment. Circulating exosomal microRNAs (miRNAs) have been shown to reverse chemo-resistance and are promising biomarkers for CRC. The capacity of engineered exosomes to cross biological barriers and deliver functional miRNAs could be used to achieve these proposes. The object of this review is the investigation of the role of exosomal miRNA in the chemo-resistance, diagnosis, and prognosis of CRC. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, electronic databases, PubMed, EMBASE, Web of Science, Scopus were searched from January 1990 to November 2020. Ultimately, eight articles included five in vitro (16 cell lines) and three in vivo examinations. Three studies demonstrated that increasing or decreasing mRNA expression was associated with increasing and decreasing cell proliferation in vitro. The presence of miRNA in two studies increased the sensitivity of the drug and exhibited a considerable growth inhibitory effect on cancer cell proliferation. The apoptotic rate was significantly increased in four studies by increased mRNA expression and reduced mrna expression. Tumor volume of xenograft models in three studies suppressed by antitumor miRNA activity. In contrast, anti-miRNA activity in one study decreased the tumor volume. Exosomal miRNAs can be regulators of chemo-resistance and predict adverse outcomes in CRC patients. In sum, exosomes containing miRNAs can be a promising biomarker for the prognosis and diagnosis of CRC. Subsequent research should be a focus on delineating the function of exosomal miRNA before clinical use.


Assuntos
Neoplasias Colorretais , Exossomos , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , RNA Mensageiro/metabolismo
3.
Drug Res (Stuttg) ; 72(3): 171-176, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35255515

RESUMO

INTRODUCTION: Osteosarcoma (OS) is a primary bone sarcoma with a high recurrence rate and poorer prognosis. The application of natural agents in combinational therapies can increase the efficacy of treatment and decrease the side effects. Herein, we aimed to evaluate the effects of Thymoquinone (TQ) combined with Cisplatin on apoptosis and its underlying mechanisms in the Saos-2 cells. METHODS: The effects of TQ and Cisplatin on Saos-2 cell viability were measured using an MTT assay. Western blotting was applied for the measurement of γH2AX protein expression. The expression levels of 8-Hydroxy-2'-deoxyguanosine (8-oxo-dG) were evaluated by enzyme-linked immunosorbent assay (ELISA). DCFH-DA fluorescence dye was used to detect reactive oxygen species (ROS) formation. For evaluation of apoptosis, flow cytometry was employed. RESULTS: TQ dramatically promotes the cytotoxic effects of Cisplatin. TQ considerably enhanced the expression levels of 8-oxo-dG and γ-H2AX in Saos-2 cells. After TQ treatment, ROS levels were increased; furthermore, TQ treatment resulted in the potentiation of Cisplatin-induced apoptosis in Saos-2 cells compared to either TQ or Cisplatin treated cells. CONCLUSION: In general, TQ plus Cisplatin resulted in potentiated cellular cytotoxicity by increasing ROS level and inducing oxidative DNA damage, leading to the potent induction of apoptosis in tumor cells.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Osteossarcoma , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Osteossarcoma/tratamento farmacológico
4.
Bioimpacts ; 12(1): 57-64, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35087717

RESUMO

Introduction: Hydrogels are unique candidates for a wide range of biomedical applications including drug delivery and tissue engineering. The present investigation was designed to consider the impact of chitosan-based hydrogels as a scaffold on the proliferation of human bone marrow mesenchymal stem cells (hBM-MSCs) besides neutralization of oxidative stress in hBM-MSCs. Methods: Chitosan (CS) and CS-gelatin hydrogels were fabricated through ionic crosslinking using ß-glycerophosphate. The hBM-MSCs were cultured on the prepared matrices and their proliferation was evaluated using DAPI staining and MTT assay. Furthermore, the effect of hydrogels on oxidative stress was assessed by measuring the expression of NQO1, Nrf2, and HO-1 genes using real-time PCR. Results: The developed hydrogels indicated a porous structure with high water content. The toxicity studies showed that the prepared hydrogels have a high biocompatibility/cytocompatibility. The expression of intracellular antioxidant genes was studied to ensure that stress is not imposed by the scaffold on the nested cells. The results showed that Nrf2 as a super transcription factor of antioxidant genes and its downstream antioxidant gene, NQO1 were downregulated. Unexpectedly, the upregulation of HO-1 was detected in the current study. Conclusion: The prepared CS-based hydrogels with desired properties including porous structure, high swelling ability, and cytocompatibility did not show oxidative stress for the nesting of stem cells. Therefore, they could be attractive scaffolds to support stem cells for successful tissue engineering purposes.

5.
Eur J Pharmacol ; 904: 174131, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933464

RESUMO

The safe development of nanotechnology and usage of nanoparticles (NPs) require the cellular toxicity examination of these NPs. Systematic studies are necessary to collect related data and comparison of the physicochemical features of NPs and their effects on cellular viability on model systems. In the present study, we systematically reviewed original studies, which investigated the cytotoxic effects and apoptosis of free NPs (loaded with doxorubicin (Dox)/or methotrexate (MTX)) via in vitro models. Articles were systematically collected by screening the literature published online in the following databases; PUBMED and SCOPUS and Web of Science and EMBASE. 23 in vitro cytotoxicity studies with 8 apoptosis examinations were found on osteosarcoma (OS) cell lines (mostly on MG-63). 43.47% of the synthesized NPs (10 studies) showed no cytotoxicity to OS cells. 39.13% of the synthesized NPs (9 studies) showed time and/or concentration related-cytotoxicity. Potent cytotoxic synthesized NP did not state. Significance difference between the half-maximal inhibitory concentration (IC50) of drug and drug/NP reported in all studies. Involved NPs in this systematic review for delivery of Dox/or MTX to OS cells have higher safety index and biocompatibility, although small and positively charged NPs acted more toxic in comparison to larger and negative ones, apoptosis rate like cytotoxicity index was notable in drug/NP group, to apply them in clinical works. Future studies are required to address the mechanisms involved in cytotoxicity and apoptosis with a special focus on in vivo investigations.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Metotrexato/farmacologia , Nanopartículas/química , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Humanos , Osteossarcoma/tratamento farmacológico
6.
J Drug Target ; 28(1): 92-101, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31062625

RESUMO

Distinctive physicochemical features make mesoporous silica magnetic nanoparticles (SPION@SiO2) as a multifunctional nanosystem (NS) for the targeted delivery of therapeutic agents. In the present study, we engineered the mucin-1 (MUC-1) conjugated SPION@SiO2 (SPION@SiO2-MUC-1) for the targeted delivery of doxorubicin (DOX) to the breast cancer cells. Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesised using thermal decomposition technique, and then, coated with mesoporous silica to modify their biocompatibility and reduce undesired cytotoxic effects. Subsequently, DOX was loaded onto the silica porous structures, which was then nanoparticles (NPs) grafted with 5'-amine-modified MUC-1 aptamers. Transmission electron microscopy and particle size analysis by differential light scattering exhibited spherical and monodisperse NPs with a size range of 5-27 nm. The FT-IR spectroscopy confirmed the surface modification of the engineered NS. The surface area and pore size of the SPION@SiO2-COOH NSs were calculated by BJH and BET calculations. The MTT assay revealed higher cytotoxicity of MUC-1 grafted SPION@SiO2 NSs in the MUC-1-positive MCF-7 cells as compared to the control MUC-1-negative MDA-MB-231 cells. The flow cytometry analysis of the SPION@SiO2-MUC-1 NSs revealed a higher uptake as compared to the non-targeted nanocomposite (NC) in MCF-7 cells. In conclusion, the engineered SPION@SiO2-MUC-1 NS is proposed to serve as an effective multifunctional targeted nanomedicine/theranostics against MUC-1 overexpressing cancer cells.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanopartículas de Magnetita/química , Mucina-1/química , Dióxido de Silício/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Células MCF-7 , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Appl Microbiol Biotechnol ; 102(21): 9267-9278, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30159589

RESUMO

The planktonic blue-green microalga Spirulina (Arthrospira) platensis possesses important features (e.g., high protein and vital lipids contents as well as essential vitamins) and can be consumed by humans and animals. Accordingly, this microalga gained growing attention as a new platform for producing edible-based pharmaceutical proteins. However, there are limited successful strategies for the transformation of S. platensis, in part because of an efficient expression of strong endonucleases in its cytoplasm. In the current work, as a pilot step for the expression of therapeutic proteins, an Agrobacterium-based system was established to transfer gfp:gus and hygromycin resistance (hygr) genes into the genome of S. platensis. The presence of acetosyringone in the transfection medium significantly reduced the transformation efficiency. The PCR and real-time RT-PCR data confirmed the successful integration and transcription of the genes. Flow cytometry and ß-glucuronidase (GUS) activity experiments confirmed the successful production of GFP and the enzyme. Moreover, the western blot analysis showed a ~ 90 kDa band in the transformed cells, indicating the successful production of the GFP:GUS protein. Three months after the transformation, the gene expression stability was validated by histochemical, flow cytometry, and hygromycin B resistance analyses.


Assuntos
Microalgas/genética , Spirulina/genética , Transformação Genética/genética , Vacinas de Plantas Comestíveis/genética , Agrobacterium/genética , Citoplasma/genética , Endonucleases/genética , Expressão Gênica/genética , Técnicas de Transferência de Genes , Glucuronidase/genética , Higromicina B/metabolismo , Transcrição Gênica/genética
8.
Appl Microbiol Biotechnol ; 102(16): 6899-6913, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29862446

RESUMO

Infection with Helicobacter pylori may result in the emergence of gastric adenocarcinoma. Among various toxins assisting pathogenesis of H. pylori, the vacuolating cytotoxin A (VacA) is one of the most potent toxins known as the major cause of the peptic ulcer and gastric adenocarcinoma. To isolate single-chain variable fragments (scFvs) against two conserved regions of VacA, we capitalized on the phage display technology and a solution-phase biopanning (SPB). Characterization of scFvs was carried out by enzyme-linked immunosorbent assay (ELISA), immunoblotting, and surface plasmon resonance (SPR). Bioinformatics analyses were also performed in order to characterize the structural and functional properties of the isolated scFvs and the interaction(s) between the isolated antibodies (Ab)-antigen (Ag). After four rounds of biopanning, the positive colonies detected by scFv ELISA were harvested to extract the plasmids and perform sequencing. Of several colonies, three colonies showed high affinity to the VacA1 and two colonies for the VacA2. Further complementary examinations (e.g., sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), western blot, SPR, and flow cytometry) displayed the high affinity and specificity of the isolated scFvs to the VacA. Docking results revealed the interaction of the complementarity-determining regions (CDRs) with the VacA peptide. In conclusion, for the first time, we report on the isolation of several scFvs against conserved residues of VacA toxin with high affinity and specificity, which may be used as novel diagnostic/therapeutic tool in the H. pylori infection.


Assuntos
Anticorpos Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anticorpos Antibacterianos/genética , Western Blotting , Técnicas de Visualização da Superfície Celular , Sequência Conservada/genética , Ensaio de Imunoadsorção Enzimática , Infecções por Helicobacter/diagnóstico , Helicobacter pylori/química , Helicobacter pylori/genética
9.
Bioimpacts ; 7(3): 193-198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29159146

RESUMO

Introduction: The oral tumor is the sixth most prevalent type of cancer worldwide and the second leading cause of cancer-related mortality. Although chemotherapy and immunotherapy are the main strategies for the treatment of oral cancer, an emergence of inevitable resistance to these treatment modalities is the major drawback that causes recurrence of the disease. Nowadays, probiotics have been suggested as adjunctive and complementary treatment modalities for improving the impacts of chemotherapy and immunotherapy agents. Probiotics, the friendly microflora in our bodies, contribute to the production of useful metabolites with positive effects on the immune system against various diseases such as cancer. Methods:Lactobacillus plantarum is one of the most important bacteria, which commensally live in the human oral system. In the current study, the impacts of L. plantarum on maintaining oral system health were investigated, and the molecular mechanisms of inhibition of oral cancer KB cells mediated by L. plantarum were evaluated using real-time polymerase chain reaction (PCR) and FACS flow cytometry analyses. Results: Our findings showed that L. plantarum is effective in the signal transduction of the oral cancer cells through upregulation and downregulation of PTEN and MAPK pathways, respectively. Conclusion: Based on the biological effects of oral candidate probiotics candidate bacterium L. plantarum on functional expression of PTEN and MAPK pathways, this microorganism seems to play a key role in controlling undesired cancer development in the oral system. Taken all, L. plantarum is proposed as a potential candidate for probiotics cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...