Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell Rep ; 37(13): 110150, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965418

RESUMO

Enteric pathogens overcome barrier immunity within the intestinal environment that includes the endogenous flora. The microbiota produces diverse ligands, and the full spectrum of microbial products that are sensed by the epithelium and prime protective immunity is unknown. Using Drosophila, we find that the gut presents a high barrier to infection, which is partially due to signals from the microbiota, as loss of the microbiota enhances oral viral infection. We report cyclic dinucleotide (CDN) feeding is sufficient to protect microbiota-deficient flies from enhanced oral infection, suggesting that bacterial-derived CDNs induce immunity. Mechanistically, we find CDN protection is dSTING- and dTBK1-dependent, leading to NF-kB-dependent gene expression. Furthermore, we identify the apical nucleoside transporter, CNT2, as required for oral CDN protection. Altogether, our studies define a role for bacterial products in priming immune defenses in the gut.


Assuntos
Infecções por Alphavirus/imunologia , Antivirais/farmacologia , Drosophila melanogaster/imunologia , Enterócitos/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nucleotídeos Cíclicos/administração & dosagem , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/virologia , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Enterócitos/efeitos dos fármacos , Enterócitos/virologia , Feminino , Imunidade Inata , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sindbis virus/imunologia
2.
Virology ; 543: 1-6, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32056841

RESUMO

Arboviruses are an emerging threat to public health. Arbovirus transmission to vertebrates hinges on dissemination from the arthropod gastrointestinal tract, and ultimately infection of the arthropod salivary glands. Therefore, salivary gland immunity impacts arbovirus transmission; however, these immune responses are poorly understood. Here, we describe the utility of Drosophila melanogaster as a salivary gland infection model. First, we describe the use of a salivary gland-specific driver to launch RNA interference or virus replicon transgenes. Next, we infect flies with an arbovirus panel and find multiple viruses that infect Drosophila salivary glands, albeit inefficiently. We find that this infection is not controlled by antiviral RNA silencing; thus, we silence a panel of immune genes in the salivary glands, but do not observe changes in infection. These data suggest that Drosophila may be used to study salivary gland infection, and that there are likely unexplored pathways controlling infection of this tissue.


Assuntos
Arbovírus , Drosophila melanogaster , Modelos Animais , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferência de RNA , Glândulas Salivares/imunologia , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Vesiculovirus , Replicação Viral , Zika virus
3.
Cell Rep ; 28(10): 2647-2658.e5, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484075

RESUMO

Mxra8 is a recently described receptor for multiple alphaviruses, including Chikungunya (CHIKV), Mayaro (MAYV), Ross River (RRV), and O'nyong nyong (ONNV) viruses. To determine its role in pathogenesis, we generated mice with mutant Mxra8 alleles: an 8-nucleotide deletion that produces a truncated, soluble form (Mxra8Δ8/Δ8) and a 97-nucleotide deletion that abolishes Mxra8 expression (Mxra8Δ97/Δ97). Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 fibroblasts show reduced CHIKV infection in culture, and Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 mice have decreased infection of musculoskeletal tissues with CHIKV, MAYV, RRV, or ONNV. Less foot swelling is observed in CHIKV-infected Mxra8 mutant mice, which correlated with fewer infiltrating neutrophils and cytokines. A recombinant E2-D71A CHIKV with diminished binding to Mxra8 is attenuated in vivo in wild-type mice. Ectopic Mxra8 expression is sufficient to enhance CHIKV infection and lethality in transgenic flies. These studies establish a role for Mxra8 in the pathogenesis of multiple alphaviruses and suggest that targeting this protein may mitigate disease in humans.


Assuntos
Alphavirus/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/virologia , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Alphavirus/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Artrite/patologia , Artrite/virologia , Sistemas CRISPR-Cas/genética , Febre de Chikungunya/metabolismo , Febre de Chikungunya/patologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/genética , Drosophila melanogaster/efeitos dos fármacos , Imunoglobulinas/deficiência , Inflamação/patologia , Proteínas de Membrana/deficiência , Camundongos Endogâmicos C57BL , Mutação/genética
4.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289184

RESUMO

Arthropod-borne viruses are diverse pathogens and are often associated with human disease. These viruses span multiple genera, including flaviviruses, alphaviruses, and bunyaviruses. In a high-throughput drug screen, we found that tenovin-1 was antiviral against the flaviviruses Zika virus and dengue virus. Tenovin-1 is a sirtuin inhibitor, and here we found that inhibition of sirtuins, but not inhibition of the related histone deacetylases, is potently antiviral against diverse arboviruses. Sirtuin inhibitors block infection of arboviruses in multiple human cell types. We found that sirtuin inhibitors arrest infection downstream of entry but that they do so at an early step, preventing the accumulation of viral RNA and protein. However, sirtuin inhibitors had no impact on the replication of flaviviral replicons, suggesting a defect in the establishment of replication. Consistent with this, we found that sirtuin inhibitors impacted double-stranded RNA (dsRNA) accumulation during flaviviral infection. Since these viruses infect vector insects, we also tested whether sirtuin inhibitors impacted infection of adult flies and found that these inhibitors blocked infection; therefore, they target highly conserved facets of replication. Taken together, these results suggest that sirtuin inhibitors represent a new class of potent host-targeting antivirals.IMPORTANCE Arthropod-borne viruses are diverse pathogens and are associated with human disease. Through high-throughput drug screening, we found that sirtuin inhibitors are potently antiviral against diverse arboviruses, including flaviviruses such as West Nile virus, bunyaviruses such as Rift Valley fever virus, and alphaviruses such as chikungunya virus. Sirtuin inhibitors block infection of these viruses in multiple human cell types. Moreover, we found that sirtuin inhibitors arrest infection downstream of entry but that they do so at an early step, preventing the accumulation of viral RNA and protein. Since these viruses infect vector insects, we also tested whether sirtuin inhibitors impacted infection of adult flies and found that these inhibitors blocked infection; therefore, they target highly conserved facets of replication. Taken together, these results suggest that sirtuin inhibitors represent a new class of potent host-targeting antivirals.


Assuntos
Acetanilidas/farmacologia , Antivirais/farmacologia , Arbovírus/efeitos dos fármacos , Dípteros/virologia , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Sirtuínas/antagonistas & inibidores , Tioureia/análogos & derivados , Animais , Vírus da Dengue/efeitos dos fármacos , Dípteros/efeitos dos fármacos , Descoberta de Drogas , Feminino , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Tioureia/farmacologia , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos
5.
Cell Host Microbe ; 24(1): 57-68.e3, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29934091

RESUMO

The emerging arthropod-borne flavivirus Zika virus (ZIKV) is associated with neurological complications. Innate immunity is essential for the control of virus infection, but the innate immune mechanisms that impact viral infection of neurons remain poorly defined. Using the genetically tractable Drosophila system, we show that ZIKV infection of the adult fly brain leads to NF-kB-dependent inflammatory signaling, which serves to limit infection. ZIKV-dependent NF-kB activation induces the expression of Drosophila stimulator of interferon genes (dSTING) in the brain. dSTING protects against ZIKV by inducing autophagy in the brain. Loss of autophagy leads to increased ZIKV infection of the brain and death of the infected fly, while pharmacological activation of autophagy is protective. These data suggest an essential role for an inflammation-dependent STING pathway in the control of neuronal infection and a conserved role for STING in antimicrobial autophagy, which may represent an ancestral function for this essential innate immune sensor.


Assuntos
Autofagia/fisiologia , Encéfalo/imunologia , Drosophila melanogaster/imunologia , Imunidade Inata , Inflamação/imunologia , Transdução de Sinais/imunologia , Infecção por Zika virus/imunologia , Animais , Anti-Infecciosos , Encéfalo/virologia , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Encefalite/imunologia , Encefalite/virologia , Feminino , Humanos , Masculino , NF-kappa B/imunologia , Neurônios/imunologia , Neurônios/virologia , Interferência de RNA/imunologia , Células Vero , Zika virus/patogenicidade
6.
Genes Dev ; 30(14): 1658-70, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27474443

RESUMO

RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3'-to-5' RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3' untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses.


Assuntos
Exossomos/metabolismo , Estabilidade de RNA/fisiologia , RNA Viral/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Drosophila/virologia , Humanos , Complexos Multiproteicos/genética , Poliadenilação , Ligação Proteica , Transporte Proteico , Interferência de RNA , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , Fatores de Transcrição/metabolismo
7.
Cell Host Microbe ; 18(5): 571-81, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26567510

RESUMO

Enteric pathogens must overcome intestinal defenses to establish infection. In Drosophila, the ERK signaling pathway inhibits enteric virus infection. The intestinal microflora also impacts immunity but its role in enteric viral infection is unknown. Here we show that two signals are required to activate antiviral ERK signaling in the intestinal epithelium. One signal depends on recognition of peptidoglycan from the microbiota, particularly from the commensal Acetobacter pomorum, which primes the NF-kB-dependent induction of a secreted factor, Pvf2. However, the microbiota is not sufficient to induce this pathway; a second virus-initiated signaling event involving release of transcriptional paused genes mediated by the kinase Cdk9 is also required for Pvf2 production. Pvf2 stimulates antiviral immunity by binding to the receptor tyrosine kinase PVR, which is necessary and sufficient for intestinal ERK responses. These findings demonstrate that sensing of specific commensals primes inflammatory signaling required for epithelial responses that restrict enteric viral infections.


Assuntos
Drosophila/imunologia , Drosophila/virologia , Imunidade Inata , Microbiota , Animais , Bactérias/classificação , Bactérias/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Drosophila/anatomia & histologia , Drosophila/microbiologia , Proteínas de Drosophila/metabolismo , Sistema de Sinalização das MAP Quinases , Peptidoglicano/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
8.
Genes Dev ; 29(20): 2168-82, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26450910

RESUMO

Thousands of eukaryotic protein-coding genes are noncanonically spliced to produce circular RNAs. Bioinformatics has indicated that long introns generally flank exons that circularize in Drosophila, but the underlying mechanisms by which these circular RNAs are generated are largely unknown. Here, using extensive mutagenesis of expression plasmids and RNAi screening, we reveal that circularization of the Drosophila laccase2 gene is regulated by both intronic repeats and trans-acting splicing factors. Analogous to what has been observed in humans and mice, base-pairing between highly complementary transposable elements facilitates backsplicing. Long flanking repeats (∼ 400 nucleotides [nt]) promote circularization cotranscriptionally, whereas pre-mRNAs containing minimal repeats (<40 nt) generate circular RNAs predominately after 3' end processing. Unlike the previously characterized Muscleblind (Mbl) circular RNA, which requires the Mbl protein for its biogenesis, we found that Laccase2 circular RNA levels are not controlled by Mbl or the Laccase2 gene product but rather by multiple hnRNP (heterogeneous nuclear ribonucleoprotein) and SR (serine-arginine) proteins acting in a combinatorial manner. hnRNP and SR proteins also regulate the expression of other Drosophila circular RNAs, including Plexin A (PlexA), suggesting a common strategy for regulating backsplicing. Furthermore, the laccase2 flanking introns support efficient circularization of diverse exons in Drosophila and human cells, providing a new tool for exploring the functional consequences of circular RNA expression across eukaryotes.


Assuntos
Drosophila melanogaster/genética , Regulação Enzimológica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Íntrons/genética , Lacase/biossíntese , Lacase/genética , RNA/genética , Animais , Pareamento de Bases , Proteínas de Drosophila/genética , Humanos , Repetições de Microssatélites/genética , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Fatores de Processamento de Serina-Arginina/genética
9.
mBio ; 6(2)2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25852164

RESUMO

UNLABELLED: Upon infection, pathogen recognition leads to a rapidly activated gene expression program that induces antimicrobial effectors to clear the invader. We recently found that Nup98 regulates the expression of a subset of rapidly activated antiviral genes to restrict disparate RNA virus infections in Drosophila by promoting RNA polymerase occupancy at the promoters of these antiviral genes. How Nup98 specifically targets these loci was unclear; however, it is known that Nup98 participates with transcription factors to regulate developmental-gene activation. We reasoned that additional transcription factors may facilitate the Nup98-dependent expression of antiviral genes. In a genome-wide RNA interference (RNAi) screen, we identified a relatively understudied forkhead transcription factor, FoxK, as active against Sindbis virus (SINV) in Drosophila. Here we find that FoxK is active against the panel of viruses that are restricted by Nup98, including SINV and vesicular stomatitis virus (VSV). Mechanistically, we show that FoxK coordinately regulates the Nup98-dependent expression of antiviral genes. Depletion of FoxK significantly reduces Nup98-dependent induction of antiviral genes and reduces the expression of a forkhead response element-containing luciferase reporter. Together, these data show that FoxK-mediated activation of gene expression is Nup98 dependent. We extended our studies to mammalian cells and found that the mammalian ortholog FOXK1 is antiviral against two disparate RNA viruses, SINV and VSV, in human cells. Interestingly, FOXK1 also plays a role in the expression of antiviral genes in mammals: depletion of FOXK1 attenuates virus-inducible interferon-stimulated response element (ISRE) reporter expression. Overall, our results demonstrate a novel role for FOXK1 in regulating the expression of antiviral genes, from insects to humans. IMPORTANCE: Innate immunity is characterized by rapid gene expression programs, from insects to mammals. Furthermore, we find that Nup98, known for its roles in the nuclear pore, plays a noncanonical role in binding the promoters and poising a subset of loci for rapid antiviral gene induction. It was unclear how Nup98 accesses these specific genes, and we here demonstrate that Nup98 cooperates with the transcription factor FoxK to regulate this gene expression program. Depletion of FoxK specifically reduces the induction of Nup98-dependent genes. Further, we find that the antiviral function of FoxK is conserved, as the human ortholog FOXK1 is also antiviral and regulates gene expression from virus-induced promoters. Although other forkhead transcription factors have been implicated in immunity, a role for FoxK in antiviral defense was previously unappreciated. Our findings reveal a conserved and novel role for FoxK in coordinating with Nup98 to promote a robust and complex antiviral transcriptional response.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Sindbis virus/imunologia , Vesiculovirus/imunologia , Animais , Drosophila , Humanos , Mamíferos
10.
Proc Natl Acad Sci U S A ; 111(37): E3890-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197089

RESUMO

In response to infection, the innate immune system rapidly activates an elaborate and tightly orchestrated gene expression program to induce critical antimicrobial genes. While many key players in this program have been identified in disparate biological systems, it is clear that there are additional uncharacterized mechanisms at play. Our previous studies revealed that a rapidly-induced antiviral gene expression program is active against disparate human arthropod-borne viruses in Drosophila. Moreover, one-half of this program is regulated at the level of transcriptional pausing. Here we found that Nup98, a virus-induced gene, was antiviral against a panel of viruses both in cells and adult flies since its depletion significantly enhanced viral infection. Mechanistically, we found that Nup98 promotes antiviral gene expression in Drosophila at the level of transcription. Expression profiling revealed that the virus-induced activation of 36 genes was abrogated upon loss of Nup98; and we found that a subset of these Nup98-dependent genes were antiviral. These Nup98-dependent virus-induced genes are Cdk9-dependent and translation-independent suggesting that these are rapidly induced primary response genes. Biochemically, we demonstrate that Nup98 is directly bound to the promoters of virus-induced genes, and that it promotes occupancy of the initiating form of RNA polymerase II at these promoters, which are rapidly induced on viral infection to restrict human arboviruses in insects.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Regulação da Expressão Gênica , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , Envelhecimento/patologia , Animais , Núcleo Celular/metabolismo , Genes de Insetos , Humanos , Poro Nuclear/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Transporte Proteico , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sindbis virus/fisiologia
11.
Cell ; 158(4): 764-777, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126784

RESUMO

DEAD-box helicases play essential roles in RNA metabolism across species, but emerging data suggest that they have additional functions in immunity. Through RNAi screening, we identify an evolutionarily conserved and interferon-independent role for the DEAD-box helicase DDX17 in restricting Rift Valley fever virus (RVFV), a mosquito-transmitted virus in the bunyavirus family that causes severe morbidity and mortality in humans and livestock. Loss of Drosophila DDX17 (Rm62) in cells and flies enhanced RVFV infection. Similarly, depletion of DDX17 but not the related helicase DDX5 increased RVFV replication in human cells. Using crosslinking immunoprecipitation high-throughput sequencing (CLIP-seq), we show that DDX17 binds the stem loops of host pri-miRNA to facilitate their processing and also an essential stem loop in bunyaviral RNA to restrict infection. Thus, DDX17 has dual roles in the recognition of stem loops: in the nucleus for endogenous microRNA (miRNA) biogenesis and in the cytoplasm for surveillance against structured non-self-elements.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , MicroRNAs/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Animais , Linhagem Celular Tumoral , RNA Helicases DEAD-box/imunologia , Proteínas de Drosophila/imunologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/virologia , Humanos , Imunidade Inata , Sequências Repetidas Invertidas , RNA Viral/química , Replicação Viral
12.
PLoS Pathog ; 10(2): e1003914, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24550726

RESUMO

Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts.


Assuntos
DNA Helicases/genética , Proteínas de Drosophila/genética , Infecções por Flavivirus/genética , Interações Hospedeiro-Parasita/genética , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Culicidae , Drosophila melanogaster , Flavivirus/genética , Infecções por Flavivirus/imunologia , Estudo de Associação Genômica Ampla , Humanos , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/imunologia , Proteína Exportina 1
13.
Immunity ; 40(1): 51-65, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24374193

RESUMO

Autophagy has been implicated as a component of host defense, but the significance of antimicrobial autophagy in vivo and the mechanism by which it is regulated during infection are poorly defined. Here we found that antiviral autophagy was conserved in flies and mammals during infection with Rift Valley fever virus (RVFV), a mosquito-borne virus that causes disease in humans and livestock. In Drosophila, Toll-7 limited RVFV replication and mortality through activation of autophagy. RVFV infection also elicited autophagy in mouse and human cells, and viral replication was increased in the absence of autophagy genes. The mammalian Toll-like receptor adaptor, MyD88, was required for anti-RVFV autophagy, revealing an evolutionarily conserved requirement for pattern-recognition receptors in antiviral autophagy. Pharmacologic activation of autophagy inhibited RVFV infection in mammalian cells, including primary hepatocytes and neurons. Thus, autophagy modulation might be an effective strategy for treating RVFV infection, which lacks approved vaccines and therapeutics.


Assuntos
Autofagia/imunologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/imunologia , Compostos Alílicos/farmacologia , Animais , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Células Cultivadas , Drosophila , Evolução Molecular , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Controle de Infecções/métodos , Mamíferos , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/virologia , Quinazolinas/farmacologia , Ratos , Febre do Vale de Rift/tratamento farmacológico , Receptor 7 Toll-Like/metabolismo , Replicação Viral
14.
Cell Rep ; 5(6): 1737-48, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24332855

RESUMO

Alphaviruses are a large class of insect-borne human pathogens and little is known about the host-factor requirements for infection. To identify such factors, we performed a genome-wide RNAi screen using model Drosophila cells and validated 94 genes that impacted infection of Sindbis virus (SINV), the prototypical alphavirus. We identified a conserved role for SEC61A and valosin-containing protein (VCP) in facilitating SINV entry in insects and mammals. SEC61A and VCP selectively regulate trafficking of the entry receptor NRAMP2, and loss or pharmacological inhibition of these proteins leads to altered NRAMP2 trafficking to lysosomal compartments and proteolytic digestion within lysosomes. NRAMP2 is the major iron transporter in cells, and loss of NRAMP2 attenuates intracellular iron transport. Thus, this study reveals genes and pathways involved in both infection and iron homeostasis that may serve as targets for antiviral therapeutics or for iron-imbalance disorders.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Drosophila/metabolismo , Genoma de Inseto , Proteínas de Membrana/metabolismo , Sindbis virus/patogenicidade , Internalização do Vírus , Adenosina Trifosfatases/genética , Aedes/genética , Aedes/metabolismo , Aedes/virologia , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Drosophila/genética , Drosophila/metabolismo , Drosophila/virologia , Proteínas de Drosophila/genética , Humanos , Ferro/metabolismo , Proteínas de Membrana/genética , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Canais de Translocação SEC , Proteína com Valosina
15.
Proc Natl Acad Sci U S A ; 110(37): 15025-30, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980175

RESUMO

A unique facet of arthropod-borne virus (arbovirus) infection is that the pathogens are orally acquired by an insect vector during the taking of a blood meal, which directly links nutrient acquisition and pathogen challenge. We show that the nutrient responsive ERK pathway is both induced by and restricts disparate arboviruses in Drosophila intestines, providing insight into the molecular determinants of the antiviral "midgut barrier." Wild-type flies are refractory to oral infection by arboviruses, including Sindbis virus and vesicular stomatitis virus, but this innate restriction can be overcome chemically by oral administration of an ERK pathway inhibitor or genetically via the specific loss of ERK in Drosophila intestinal epithelial cells. In addition, we found that vertebrate insulin, which activates ERK in the mosquito gut during a blood meal, restricts viral infection in Drosophila cells and against viral invasion of the insect gut epithelium. We find that ERK's antiviral signaling activity is likely conserved in Aedes mosquitoes, because genetic or pharmacologic manipulation of the ERK pathway affects viral infection of mosquito cells. These studies demonstrate that ERK signaling has a broadly antiviral role in insects and suggest that insects take advantage of cross-species signals in the meal to trigger antiviral immunity.


Assuntos
Arbovírus/imunologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Sistema de Sinalização das MAP Quinases , Aedes/imunologia , Aedes/metabolismo , Aedes/virologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Arbovírus/patogenicidade , Sistema Digestório/imunologia , Sistema Digestório/metabolismo , Sistema Digestório/virologia , Drosophila melanogaster/virologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Insetos Vetores/imunologia , Insetos Vetores/metabolismo , Insetos Vetores/virologia , Insulina/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Interferência de RNA
16.
Genes Dev ; 27(13): 1511-25, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824541

RESUMO

Bunyaviruses are an emerging group of medically important viruses, many of which are transmitted from insects to mammals. To identify host factors that impact infection, we performed a genome-wide RNAi screen in Drosophila and identified 131 genes that impacted infection of the mosquito-transmitted bunyavirus Rift Valley fever virus (RVFV). Dcp2, the catalytic component of the mRNA decapping machinery, and two decapping activators, DDX6 and LSM7, were antiviral against disparate bunyaviruses in both insect cells and adult flies. Bunyaviruses 5' cap their mRNAs by "cap-snatching" the 5' ends of poorly defined host mRNAs. We found that RVFV cap-snatches the 5' ends of Dcp2 targeted mRNAs, including cell cycle-related genes. Loss of Dcp2 allows increased viral transcription without impacting viral mRNA stability, while ectopic expression of Dcp2 impedes viral transcription. Furthermore, arresting cells in late S/early G2 led to increased Dcp2 mRNA targets and increased RVFV replication. Therefore, RVFV competes for the Dcp2-accessible mRNA pool, which is dynamically regulated and can present a bottleneck for viral replication.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Genoma de Inseto/genética , Orthobunyavirus/fisiologia , Capuzes de RNA/metabolismo , Fatores de Transcrição , Replicação Viral/fisiologia , Aedes/virologia , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Capuzes de RNA/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
EMBO Rep ; 14(3): 269-75, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23370384

RESUMO

Drosophila use small-interfering RNA mechanisms to limit the amplification of viral genomes. However, it is unclear how small RNA interference components recognize and separate viral from cellular RNA. Dnmt2 enzymes are highly conserved RNA methyltransferases with substrate specificity towards cellular tRNAs. We report here that Dnmt2 is required for efficient innate immune responses in Drosophila. Dnmt2 mutant flies accumulate increasing levels of Drosophila C virus and show activated innate immune responses. Binding of Dnmt2 to DCV RNA suggests that Dnmt2 contributes to virus control directly, possibly by RNA methylation. These observations demonstrate a role for Dnmt2 in antiviral defence.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/virologia , Vírus de Insetos/patogenicidade , RNA Viral/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Drosophila/imunologia , Proteínas de Drosophila/genética , Imunidade Inata/genética , Vírus de Insetos/metabolismo , Metilação , Mutação , Ligação Proteica
18.
J Nutr Educ Behav ; 44(6): 604-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23140565

RESUMO

OBJECTIVE: Explore the feasibility of an online behavioral weight management program for college students. METHODS: The program focused on behavioral strategies to modify eating and exercise behaviors of students interested in losing weight and/or developing a healthy lifestyle. Specific tools included weekly chat meetings with a facilitator, calorie and fat gram recommendations, daily food logs, and exercise guidance. RESULTS: Three hundred thirty-six students participated from 2 northeastern universities. Overweight/obese students wanting to lose weight had a mean body mass index of 30.6 kg/m(2) at baseline and lost an average of 5.1 ± 6.0 lbs. Those of healthy weight wanting to lose weight had a mean body mass index of 22.0 kg/m(2) at baseline and lost an average of 1.8 ± 3.2 lbs. Twenty-three percent of students lost > 5% of their baseline weight. CONCLUSIONS AND IMPLICATIONS: Use of an online behavioral weight management program may be a feasible way to help college students develop healthy eating and exercise behaviors.


Assuntos
Dieta/normas , Comportamentos Relacionados com a Saúde , Promoção da Saúde/métodos , Sobrepeso/prevenção & controle , Estudantes/psicologia , Índice de Massa Corporal , Exercício Físico/fisiologia , Exercício Físico/psicologia , Comportamento Alimentar , Feminino , Humanos , Internet , Estilo de Vida , Maine , Masculino , Sobrepeso/epidemiologia , Avaliação de Programas e Projetos de Saúde , Estudantes/estatística & dados numéricos , Universidades/estatística & dados numéricos , Vermont , Adulto Jovem
19.
Cell Host Microbe ; 12(4): 531-43, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23084920

RESUMO

Innate immune responses are characterized by precise gene expression whereby gene subsets are temporally induced to limit infection, although the mechanisms involved are incompletely understood. We show that antiviral immunity in Drosophila requires the transcriptional pausing pathway, including negative elongation factor (NELF) that pauses RNA polymerase II (Pol II) and positive elongation factor b (P-TEFb), which releases paused Pol II to produce full-length transcripts. We identify a set of genes that is rapidly transcribed upon arbovirus infection, including components of antiviral pathways (RNA silencing, autophagy, JAK/STAT, Toll, and Imd) and various Toll receptors. Many of these genes require P-TEFb for expression and exhibit pausing-associated chromatin features. Furthermore, transcriptional pausing is critical for antiviral immunity in insects because NELF and P-TEFb are required to restrict viral replication in adult flies and vector mosquito cells. Thus, transcriptional pausing primes virally induced genes to facilitate rapid gene induction and robust antiviral responses.


Assuntos
Arbovírus/patogenicidade , Drosophila/virologia , Imunidade Inata , RNA Viral/metabolismo , Transcrição Gênica , Animais , Arbovírus/imunologia , Drosophila/imunologia , Perfilação da Expressão Gênica
20.
Immunity ; 36(4): 658-67, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22464169

RESUMO

Innate immunity is highly conserved and relies on pattern recognition receptors (PRRs) such as Toll-like receptors (identified through their homology to Drosophila Toll) for pathogen recognition. Although Drosophila Toll is vital for immune recognition and defense, roles for the other eight Drosophila Tolls in immunity have remained elusive. Here we have shown that Toll-7 is a PRR both in vitro and in adult flies; loss of Toll-7 led to increased vesicular stomatitis virus (VSV) replication and mortality. Toll-7, along with additional uncharacterized Drosophila Tolls, was transcriptionally induced by VSV infection. Furthermore, Toll-7 interacted with VSV at the plasma membrane and induced antiviral autophagy independently of the canonical Toll signaling pathway. These data uncover an evolutionarily conserved role for a second Drosophila Toll receptor that links viral recognition to autophagy and defense and suggest that other Drosophila Tolls may restrict specific as yet untested pathogens, perhaps via noncanonical signaling pathways.


Assuntos
Autofagia , Drosophila melanogaster/imunologia , Receptor 7 Toll-Like/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Vírus da Estomatite Vesicular New Jersey/imunologia , Animais , Linhagem Celular , Membrana Celular/imunologia , Membrana Celular/metabolismo , Cricetinae , Drosophila melanogaster/virologia , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Receptor 7 Toll-Like/genética , Vírus da Estomatite Vesicular Indiana/fisiologia , Vírus da Estomatite Vesicular New Jersey/fisiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...