Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 77: 162-173, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004909

RESUMO

Sacred lotus (Nelumbo nucifera) has been utilized as a food, medicine, and spiritual symbol for nearly 3000 years. The medicinal properties of lotus are largely attributed to its unique profile of benzylisoquinoline alkaloids (BIAs), which includes potential anti-cancer, anti-malarial and anti-arrhythmic compounds. BIA biosynthesis in sacred lotus differs markedly from that of opium poppy and other members of the Ranunculales, most notably in an abundance of BIAs possessing the (R)-stereochemical configuration and the absence of reticuline, a major branchpoint intermediate in most BIA producers. Owing to these unique metabolic features and the pharmacological potential of lotus, we set out to elucidate the BIA biosynthesis network in N. nucifera. Here we show that lotus CYP80G (NnCYP80G) and a superior ortholog from Peruvian nutmeg (Laurelia sempervirens; LsCYP80G) stereospecifically convert (R)-N-methylcoclaurine to the proaporphine alkaloid glaziovine, which is subsequently methylated to pronuciferine, the presumed precursor to nuciferine. While sacred lotus employs a dedicated (R)-route to aporphine alkaloids from (R)-norcoclaurine, we implemented an artificial stereochemical inversion approach to flip the stereochemistry of the core BIA pathway. Exploiting the unique substrate specificity of dehydroreticuline synthase from common poppy (Papaver rhoeas) and pairing it with dehydroreticuline reductase enabled de novo synthesis of (R)-N-methylcoclaurine from (S)-norcoclaurine and its subsequent conversion to pronuciferine. We leveraged our stereochemical inversion approach to also elucidate the role of NnCYP80A in sacred lotus metabolism, which we show catalyzes the stereospecific formation of the bis-BIA nelumboferine. Screening our collection of 66 plant O-methyltransferases enabled conversion of nelumboferine to liensinine, a potential anti-cancer bis-BIA from sacred lotus. Our work highlights the unique benzylisoquinoline metabolism of N. nucifera and enables the targeted overproduction of potential lotus pharmaceuticals using engineered microbial systems.


Assuntos
Alcaloides , Benzilisoquinolinas , Nelumbo , Compostos de Espiro , Nelumbo/genética , Nelumbo/química , Nelumbo/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/farmacologia , Benzilisoquinolinas/metabolismo , Compostos de Espiro/metabolismo
2.
Nat Commun ; 10(1): 3132, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296848

RESUMO

The original version of this Comment contained errors in the legend of Figure 2, in which the locations of the fifteenth and sixteenth GBA members were incorrectly given as '(15) Australian Genome Foundry, Macquarie University; (16) Australian Foundry for Advanced Biomanufacturing, University of Queensland.'. The correct version replaces this with '(15) Australian Foundry for Advanced Biomanufacturing (AusFAB), University of Queensland and (16) Australian Genome Foundry, Macquarie University'. This has been corrected in both the PDF and HTML versions of the Comment.

4.
ACS Synth Biol ; 7(12): 2918-2929, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30474973

RESUMO

Biosynthesis of steviol glycosides in planta proceeds via two cytochrome P450 enzymes (CYPs): kaurene oxidase (KO) and kaurenoic acid hydroxylase (KAH). KO and KAH function in succession with the support of a NADPH-dependent cytochrome P450 reductase (CPR) to convert kaurene to steviol. This work describes a platform for recombinant production of steviol glucosides (SGs) in Saccharomyces cerevisiae, demonstrating the full reconstituted pathway from the simple sugar glucose to the SG precursor steviol. With a focus on optimization of the KO-KAH activities, combinations of functional homologues were tested in batch growth. Among the CYPs, novel KO75 (CYP701) and novel KAH82 (CYP72) outperformed their respective functional homologues from Stevia rebaudiana, SrKO (CYP701A5) and SrKAH (CYP81), in assays where substrate was supplemented to culture broth. With kaurene produced from glucose in the cell, SrCPR1 from S. rebaudiana supported highest turnover for KO-KAH combinations, besting two other CPRs isolated from S. rebaudiana, the Arabidopsis thaliana ATR2, and a new class I CPR12. Some coexpressions of ATR2 with a second CPR were found to diminish KAH activity, showing that coexpression of CPRs can lead to competition for CYPs with possibly adverse effects on catalysis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos do Tipo Caurano/biossíntese , Glucosídeos/biossíntese , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/metabolismo , Proteínas de Plantas/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Stevia/enzimologia , Especificidade por Substrato
5.
PLoS One ; 13(2): e0185039, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29481573

RESUMO

Organelles are intracellular compartments which are themselves compartmentalized. Biogenic and metabolic processes are localized to specialized domains or microcompartments to enhance their efficiency and suppress deleterious side reactions. An example of intra-organellar compartmentalization is the pyrenoid in the chloroplasts of algae and hornworts. This microcompartment enhances the photosynthetic CO2-fixing activity of the Calvin-Benson cycle enzyme Rubisco, suppresses an energetically wasteful oxygenase activity of Rubisco, and mitigates limiting CO2 availability in aquatic environments. Hence, the pyrenoid is functionally analogous to the carboxysomes in cyanobacteria. However, a comprehensive analysis of pyrenoid functions based on its protein composition is lacking. Here we report a proteomic characterization of the pyrenoid in the green alga Chlamydomonas reinhardtii. Pyrenoid-enriched fractions were analyzed by quantitative mass spectrometry. Contaminant proteins were identified by parallel analyses of pyrenoid-deficient mutants. This pyrenoid proteome contains 190 proteins, many of which function in processes that are known or proposed to occur in pyrenoids: e.g. the carbon concentrating mechanism, starch metabolism or RNA metabolism and translation. Using radioisotope pulse labeling experiments, we show that pyrenoid-associated ribosomes could be engaged in the localized synthesis of the large subunit of Rubisco. New pyrenoid functions are supported by proteins in tetrapyrrole and chlorophyll synthesis, carotenoid metabolism or amino acid metabolism. Hence, our results support the long-standing hypothesis that the pyrenoid is a hub for metabolism. The 81 proteins of unknown function reveal candidates for new participants in these processes. Our results provide biochemical evidence of pyrenoid functions and a resource for future research on pyrenoids and their use to enhance agricultural plant productivity. Data are available via ProteomeXchange with identifier PXD004509.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Chlamydomonas reinhardtii/fisiologia , Espectrometria de Massas , Fotossíntese
6.
ACS Synth Biol ; 5(5): 405-14, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26981892

RESUMO

The monoterpene indole alkaloids (MIAs) are a valuable family of chemicals that include the anticancer drugs vinblastine and vincristine. These compounds are of global significance-appearing on the World Health Organization's list of model essential medicines-but remain exorbitantly priced due to low in planta levels. Chemical synthesis and genetic manipulation of MIA producing plants such as Catharanthus roseus have so far failed to find a solution to this problem. Synthetic biology holds a potential answer, by building the pathway into more tractable organisms such as Saccharomyces cerevisiae. Recent work has taken the first steps in this direction by producing small amounts of the intermediate strictosidine in yeast. In order to help improve on these titers, we aimed to optimize the early biosynthetic steps of the MIA pathway to the metabolite nepetalactol. We combined a number of strategies to create a base strain producing 11.4 mg/L of the precursor geraniol. We also show production of the critical intermediate 10-hydroxygeraniol and demonstrate nepetalactol production in vitro. Lastly we demonstrate that activity of the iridoid synthase toward the intermediates geraniol and 10-hydroxygeraniol results in the synthesis of the nonproductive intermediates citronellol and 10-hydroxycitronellol. This discovery has serious implications for the reconstruction of the MIA in heterologous organisms.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Iridoides/metabolismo , Saccharomyces cerevisiae/metabolismo , Monoterpenos Acíclicos , Monoterpenos/metabolismo , Terpenos/metabolismo , Alcaloides de Vinca/metabolismo
7.
Microb Cell Fact ; 14: 73, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26016674

RESUMO

BACKGROUND: L-tyrosine is a common precursor for a wide range of valuable secondary metabolites, including benzylisoquinoline alkaloids (BIAs) and many polyketides. An industrially tractable yeast strain optimized for production of L-tyrosine could serve as a platform for the development of BIA and polyketide cell factories. This study applied a targeted metabolomics approach to evaluate metabolic engineering strategies to increase the availability of intracellular L-tyrosine in the yeast Saccharomyces cerevisiae CEN.PK. Our engineering strategies combined localized pathway engineering with global engineering of central metabolism, facilitated by genome-scale steady-state modelling. RESULTS: Addition of a tyrosine feedback resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase Aro4 from S. cerevisiae was combined with overexpression of either a tyrosine feedback resistant yeast chorismate mutase Aro7, the native pentafunctional arom protein Aro1, native prephenate dehydrogenase Tyr1 or cyclohexadienyl dehydrogenase TyrC from Zymomonas mobilis. Loss of aromatic carbon was limited by eliminating phenylpyruvate decarboxylase Aro10. The TAL gene from Rhodobacter sphaeroides was used to produce coumarate as a simple test case of a heterologous by-product of tyrosine. Additionally, multiple strategies for engineering global metabolism to promote tyrosine production were evaluated using metabolic modelling. The T21E mutant of pyruvate kinase Cdc19 was hypothesized to slow the conversion of phosphoenolpyruvate to pyruvate and accumulate the former as precursor to the shikimate pathway. The ZWF1 gene coding for glucose-6-phosphate dehydrogenase was deleted to create an NADPH deficiency designed to force the cell to couple its growth to tyrosine production via overexpressed NADP(+)-dependent prephenate dehydrogenase Tyr1. Our engineered Zwf1(-) strain expressing TYRC ARO4(FBR) and grown in the presence of methionine achieved an intracellular L-tyrosine accumulation up to 520 µmol/g DCW or 192 mM in the cytosol, but sustained flux through this pathway was found to depend on the complete elimination of feedback inhibition and degradation pathways. CONCLUSIONS: Our targeted metabolomics approach confirmed a likely regulatory site at DAHP synthase and identified another possible cofactor limitation at prephenate dehydrogenase. Additionally, the genome-scale metabolic model identified design strategies that have the potential to improve availability of erythrose 4-phosphate for DAHP synthase and cofactor availability for prephenate dehydrogenase. We evaluated these strategies and provide recommendations for further improvement of aromatic amino acid biosynthesis in S. cerevisiae.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo , Redes e Vias Metabólicas , Metabolômica
8.
Appl Microbiol Biotechnol ; 95(3): 647-59, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22218767

RESUMO

Converting cellulosic biomass to ethanol involves the enzymatic hydrolysis of cellulose and the fermentation of the resulting glucose. The yeast Saccharomyces cerevisiae is naturally ethanologenic, but lacks the enzymes necessary to degrade cellulose to glucose. Towards the goal of engineering S. cerevisiae for hydrolysis of and ethanol production from cellulose, 35 fungal ß-glucosidases (BGL) from the BGL1 and BGL5 families were screened for their ability to be functionally expressed and displayed on the cell surface. Activity assays revealed that the BGL families had different substrate specificities, with only the BGL1s displaying activity on their natural substrate, cellobiose. However, growth on cellobiose showed no correlation between the specific growth rates, the final cell titer, and the level of BGL1 activity that was expressed. One of the BGLs that expressed the highest levels of cellobiase activity, Aspergillus niger BGL1 (Anig-Bgl101), was then used for further studies directed at developing an efficient cellobiose-fermenting strain. Expressing Anig-Bgl101 from a plasmid yielded higher ethanol levels when secreted into the medium rather than anchored to the cell surface. In contrast, ethanol yields from anchored and secreted Anig-Bgl101 were comparable when integrated on the chromosome. Flow cytometry analysis revealed that chromosomal integration of Anig-Bgl101 resulted in a higher percentage of the cell population that displayed the enzyme but with overall lower expression levels.


Assuntos
Celulases/genética , Celulases/metabolismo , Expressão Gênica , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aspergillus niger/enzimologia , Aspergillus niger/genética , Biomassa , Celulose/metabolismo , Etanol/metabolismo , Fermentação , Biblioteca Gênica , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade por Substrato
9.
Metab Eng ; 13(6): 733-44, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21986057

RESUMO

In this work, Escherichia coli was engineered to produce a medically valuable cofactor, coenzyme Q(10) (CoQ(10)), by removing the endogenous octaprenyl diphosphate synthase gene and functionally replacing it with a decaprenyl diphosphate synthase gene from Sphingomonas baekryungensis. In addition, by over-expressing genes coding for rate-limiting enzymes of the aromatic pathway, biosynthesis of the CoQ(10) precursor para-hydroxybenzoate (PHB) was increased. The production of isoprenoid precursors of CoQ(10) was also improved by the heterologous expression of a synthetic mevalonate operon, which permits the conversion of exogenously supplied mevalonate to farnesyl diphosphate. The over-expression of these precursors in the CoQ(10)-producing E. coli strain resulted in an increase in CoQ(10) content, as well as in the accumulation of an intermediate of the ubiquinone pathway, decaprenylphenol (10P-Ph). In addition, the over-expression of a PHB decaprenyl transferase (UbiA) encoded by a gene from Erythrobacter sp. NAP1 was introduced to direct the flux of DPP and PHB towards the ubiquinone pathway. This further increased CoQ(10) content in engineered E. coli, but decreased the accumulation of 10P-Ph. Finally, we report that the combined over-production of isoprenoid precursors and over-expression of UbiA results in the decaprenylation of para-aminobenzoate, a biosynthetic precursor of folate, which is structurally similar to PHB.


Assuntos
Escherichia coli/metabolismo , Engenharia Genética , Ubiquinona/análogos & derivados , Ácido 4-Aminobenzoico/metabolismo , Alquil e Aril Transferases/genética , Dimetilaliltranstransferase/biossíntese , Escherichia coli/genética , Deleção de Genes , Ácido Mevalônico/metabolismo , Parabenos/metabolismo , Fenóis/metabolismo , Fosfatos de Poli-Isoprenil/biossíntese , Regiões Promotoras Genéticas , Sesquiterpenos , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Sphingomonas/genética , Sphingomonas/metabolismo , Terpenos/metabolismo , Ubiquinona/biossíntese , Ubiquinona/metabolismo , Regulação para Cima
10.
G3 (Bethesda) ; 1(4): 247-58, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22384336

RESUMO

Though highly efficient at fermenting hexose sugars, Saccharomyces cerevisiae has limited ability to ferment five-carbon sugars. As a significant portion of sugars found in cellulosic biomass is the five-carbon sugar xylose, S. cerevisiae must be engineered to metabolize pentose sugars, commonly by the addition of exogenous genes from xylose fermenting fungi. However, these recombinant strains grow poorly on xylose and require further improvement through rational engineering or evolutionary adaptation. To identify unknown genes that contribute to improved xylose fermentation in these recombinant S. cerevisiae, we performed genome-wide synthetic interaction screens to identify deletion mutants that impact xylose utilization of strains expressing the xylose isomerase gene XYLA from Piromyces sp. E2 alone or with an additional copy of the endogenous xylulokinase gene XKS1. We also screened the deletion mutant array to identify mutants whose growth is affected by xylose. Our genetic network reveals that more than 80 nonessential genes from a diverse range of cellular processes impact xylose utilization. Surprisingly, we identified four genes, ALP1, ISC1, RPL20B, and BUD21, that when individually deleted improved xylose utilization of both S. cerevisiae S288C and CEN.PK strains. We further characterized BUD21 deletion mutant cells in batch fermentations and found that they produce ethanol even the absence of exogenous XYLA. We have demonstrated that the ability of laboratory strains of S. cerevisiae to utilize xylose as a sole carbon source is suppressed, which implies that S. cerevisiae may not require the addition of exogenous genes for efficient xylose fermentation.

11.
Cell ; 143(4): 564-78, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21074048

RESUMO

Polyglutamylation is a posttranslational modification that generates glutamate side chains on tubulins and other proteins. Although this modification has been shown to be reversible, little is known about the enzymes catalyzing deglutamylation. Here we describe the enzymatic mechanism of protein deglutamylation by members of the cytosolic carboxypeptidase (CCP) family. Three enzymes (CCP1, CCP4, and CCP6) catalyze the shortening of polyglutamate chains and a fourth (CCP5) specifically removes the branching point glutamates. In addition, CCP1, CCP4, and CCP6 also remove gene-encoded glutamates from the carboxyl termini of proteins. Accordingly, we show that these enzymes convert detyrosinated tubulin into Δ2-tubulin and also modify other substrates, including myosin light chain kinase 1. We further analyze Purkinje cell degeneration (pcd) mice that lack functional CCP1 and show that microtubule hyperglutamylation is directly linked to neurodegeneration. Taken together, our results reveal that controlling the length of the polyglutamate side chains on tubulin is critical for neuronal survival.


Assuntos
Carboxipeptidases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Degeneração Neural/metabolismo , Ácido Poliglutâmico/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Cerebelo/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Bulbo Olfatório/patologia , Alinhamento de Sequência , Tubulina (Proteína)/metabolismo
12.
J Cell Biol ; 189(6): 945-54, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20530212

RESUMO

Posttranslational glutamylation of tubulin is present on selected subsets of microtubules in cells. Although the modification is expected to contribute to the spatial and temporal organization of the cytoskeleton, hardly anything is known about its functional relevance. Here we demonstrate that glutamylation, and in particular the generation of long glutamate side chains, promotes the severing of microtubules. In human cells, the generation of long side chains induces spastin-dependent microtubule disassembly and, consistently, only microtubules modified by long glutamate side chains are efficiently severed by spastin in vitro. Our study reveals a novel control mechanism for microtubule mass and stability, which is of fundamental importance to cellular physiology and might have implications for diseases related to microtubule severing.


Assuntos
Adenosina Trifosfatases/metabolismo , Ácido Glutâmico , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Adenosina Trifosfatases/genética , Animais , Citoesqueleto/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Katanina , Camundongos , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espastina , Tubulina (Proteína)/química
13.
J Bacteriol ; 189(19): 6787-95, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17644599

RESUMO

A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases.


Assuntos
Celulase/metabolismo , Clostridium thermocellum/metabolismo , Complexos Multienzimáticos/metabolismo , Proteômica/métodos , Celobiose/farmacologia , Celulase/química , Celulase/genética , Celulose/farmacologia , Cromatografia Líquida , Clostridium thermocellum/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Espectrometria de Massas por Ionização por Electrospray
14.
Biochim Biophys Acta ; 1760(7): 1115-24, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16730127

RESUMO

Flavonoid compounds are ubiquitous in nature. They constitute an important part of the human diet and act as active principles of many medicinal plants. Their O-methylation increases their lipophilicity and hence, their compartmentation and functional diversity. We have isolated and characterized a full-length flavonoid O-methyltransferase cDNA (TaOMT2) from a wheat leaf cDNA library. The recombinant TaOMT2 protein was purified to near homogeneity and tested for its substrate preference against a number of phenolic compounds. Enzyme assays and kinetic analyses indicate that TaOMT2 exhibits a pronounced preference for the flavone, tricetin and gives rise to three methylated enzyme reaction products that were identified by TLC, HPLC and ESI-MS/MS as its mono-, di- and trimethyl ether derivatives. The sequential order of tricetin methylation by TaOMT2 is envisaged to proceed via its 3'-mono--->3',5'-di--->3',4',5'-trimethyl ether derivatives. To our knowledge, this is the first report of a gene product that catalyzes three sequential O-methylations of a flavonoid substrate.


Assuntos
Cromonas/química , Metiltransferases/química , Proteínas de Plantas/fisiologia , Triticum/metabolismo , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Biblioteca Gênica , Metilação , Dados de Sequência Molecular , Fenol/química , Filogenia , Folhas de Planta , Proteínas Recombinantes/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...