Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2778: 291-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478285

RESUMO

Secretin proteins form pores in the outer membranes of Gram-negative bacteria, and as such provide a means of transporting a wide variety of molecules out of or in to the cell. They are important components of several different bacterial secretion systems, surface filament assembly machineries, and virus assembly complexes. Despite accommodating a diverse assortment of molecules, including virulence factors, folded proteins, and whole viruses, the secretin family of proteins is highly conserved, particularly in their membrane-embedded ß-barrel domain. We describe here a protocol for the expression, purification and cryo-EM structural determination of the pIV secretin from the Ff family of filamentous bacteriophages.


Assuntos
Proteínas da Membrana Bacteriana Externa , Secretina , Secretina/química , Secretina/metabolismo , Microscopia Crioeletrônica , Ligação Proteica , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
Elife ; 132024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251732

RESUMO

Surface layers (S-layers) are resilient two-dimensional protein lattices that encapsulate many bacteria and most archaea. In archaea, S-layers usually form the only structural component of the cell wall and thus act as the final frontier between the cell and its environment. Therefore, S-layers are crucial for supporting microbial life. Notwithstanding their importance, little is known about archaeal S-layers at the atomic level. Here, we combined single-particle cryo electron microscopy, cryo electron tomography, and Alphafold2 predictions to generate an atomic model of the two-component S-layer of Sulfolobus acidocaldarius. The outer component of this S-layer (SlaA) is a flexible, highly glycosylated, and stable protein. Together with the inner and membrane-bound component (SlaB), they assemble into a porous and interwoven lattice. We hypothesise that jackknife-like conformational changes in SlaA play important roles in S-layer assembly.


Assuntos
Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/metabolismo , Archaea , Bactérias , Parede Celular
3.
Nat Microbiol ; 8(10): 1834-1845, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709902

RESUMO

Translational control is an essential process for the cell to adapt to varying physiological or environmental conditions. To survive adverse conditions such as low nutrient levels, translation can be shut down almost entirely by inhibiting ribosomal function. Here we investigated eukaryotic hibernating ribosomes from the microsporidian parasite Spraguea lophii in situ by a combination of electron cryo-tomography and single-particle electron cryo-microscopy. We show that microsporidian spores contain hibernating ribosomes that are locked in a dimeric (100S) state, which is formed by a unique dimerization mechanism involving the beak region. The ribosomes within the dimer are fully assembled, suggesting that they are ready to be activated once the host cell is invaded. This study provides structural evidence for dimerization acting as a mechanism for ribosomal hibernation in microsporidia, and therefore demonstrates that eukaryotes utilize this mechanism in translational control.


Assuntos
Microsporídios , Animais , Microscopia Crioeletrônica , Esporos , Dimerização , Eucariotos , Ribossomos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37460152

RESUMO

The closely related Escherichia coli Ff filamentous phages (f1, fd, and M13) have taken a fantastic journey over the past 60 years, from the urban sewerage from which they were first isolated, to their use in high-end technologies in multiple fields. Their relatively small genome size, high titers, and the virions that tolerate fusion proteins make the Ffs an ideal system for phage display. Folding of the fusions in the oxidizing environment of the E. coli periplasm makes the Ff phages a platform that allows display of eukaryotic surface and secreted proteins, including antibodies. Resistance of the Ffs to a broad range of pH and detergents facilitates affinity screening in phage display, whereas the stability of the virions at ambient temperature makes them suitable for applications in material science and nanotechnology. Among filamentous phages, only the Ffs have been used in phage display technology, because of the most advanced state of knowledge about their biology and the various tools developed for E. coli as a cloning host for them. Filamentous phages have been thought to be a rather small group, infecting mostly Gram-negative bacteria. A recent discovery of more than 10 thousand diverse filamentous phages in bacteria and archaea, however, opens a fascinating prospect for novel applications. The main aim of this review is to give detailed biological and structural information to researchers embarking on phage display projects. The secondary aim is to discuss the yet-unresolved puzzles, as well as recent developments in filamentous phage biology, from a viewpoint of their impact on current and future applications.

5.
Mol Cell ; 83(13): 2222-2239.e5, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37329883

RESUMO

The transcriptional termination of unstable non-coding RNAs (ncRNAs) is poorly understood compared to coding transcripts. We recently identified ZC3H4-WDR82 ("restrictor") as restricting human ncRNA transcription, but how it does this is unknown. Here, we show that ZC3H4 additionally associates with ARS2 and the nuclear exosome targeting complex. The domains of ZC3H4 that contact ARS2 and WDR82 are required for ncRNA restriction, suggesting their presence in a functional complex. Consistently, ZC3H4, WDR82, and ARS2 co-transcriptionally control an overlapping population of ncRNAs. ZC3H4 is proximal to the negative elongation factor, PNUTS, which we show enables restrictor function and is required to terminate the transcription of all major RNA polymerase II transcript classes. In contrast to short ncRNAs, longer protein-coding transcription is supported by U1 snRNA, which shields transcripts from restrictor and PNUTS at hundreds of genes. These data provide important insights into the mechanism and control of transcription by restrictor and PNUTS.


Assuntos
RNA Polimerase II , Transcrição Gênica , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Núcleo Celular/metabolismo , RNA não Traduzido/genética , Proteínas Cromossômicas não Histona/genética
6.
Nat Commun ; 14(1): 2724, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169795

RESUMO

Phages are viruses that infect bacteria and dominate every ecosystem on our planet. As well as impacting microbial ecology, physiology and evolution, phages are exploited as tools in molecular biology and biotechnology. This is particularly true for the Ff (f1, fd or M13) phages, which represent a widely distributed group of filamentous viruses. Over nearly five decades, Ffs have seen an extraordinary range of applications, yet the complete structure of the phage capsid and consequently the mechanisms of infection and assembly remain largely mysterious. In this work, we use cryo-electron microscopy and a highly efficient system for production of short Ff-derived nanorods to determine a structure of a filamentous virus including the tips. We show that structure combined with mutagenesis can identify phage domains that are important in bacterial attack and for release of new progeny, allowing new models to be proposed for the phage lifecycle.


Assuntos
Bacteriófagos , Inovirus , Viroses , Humanos , Microscopia Crioeletrônica , Ecossistema , Bacteriófagos/genética , Inovirus/genética , Bactérias
7.
Biochem J ; 480(4): 283-296, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701201

RESUMO

Gram-negative bacteria are surrounded by two protein-rich membranes with a peptidoglycan layer sandwiched between them. Together they form the envelope (or cell wall), crucial for energy production, lipid biosynthesis, structural integrity, and for protection against physical and chemical environmental challenges. To achieve envelope biogenesis, periplasmic and outer-membrane proteins (OMPs) must be transported from the cytosol and through the inner-membrane, via the ubiquitous SecYEG protein-channel. Emergent proteins either fold in the periplasm or cross the peptidoglycan (PG) layer towards the outer-membrane for insertion through the ß-barrel assembly machinery (BAM). Trafficking of hydrophobic proteins through the periplasm is particularly treacherous given the high protein density and the absence of energy (ATP or chemiosmotic potential). Numerous molecular chaperones assist in the prevention and recovery from aggregation, and of these SurA is known to interact with BAM, facilitating delivery to the outer-membrane. However, it is unclear how proteins emerging from the Sec-machinery are received and protected from aggregation and proteolysis prior to an interaction with SurA. Through biochemical analysis and electron microscopy we demonstrate the binding capabilities of the unoccupied and substrate-engaged SurA to the inner-membrane translocation machinery complex of SecYEG-SecDF-YidC - aka the holo-translocon (HTL). Supported by AlphaFold predictions, we suggest a role for periplasmic domains of SecDF in chaperone recruitment to the protein translocation exit site in SecYEG. We propose that this immediate interaction with the enlisted chaperone helps to prevent aggregation and degradation of nascent envelope proteins, facilitating their safe passage to the periplasm and outer-membrane.


Assuntos
Proteínas de Escherichia coli , Periplasma , Periplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte/metabolismo , Peptidilprolil Isomerase/metabolismo
8.
Nat Commun ; 13(1): 7411, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456543

RESUMO

Pili are filamentous surface extensions that play roles in bacterial and archaeal cellular processes such as adhesion, biofilm formation, motility, cell-cell communication, DNA uptake and horizontal gene transfer. The model archaeaon Sulfolobus acidocaldarius assembles three filaments of the type-IV pilus superfamily (archaella, archaeal adhesion pili and UV-inducible pili), as well as a so-far uncharacterised fourth filament, named "thread". Here, we report on the cryo-EM structure of the archaeal thread. The filament is highly glycosylated and consists of subunits of the protein Saci_0406, arranged in a head-to-tail manner. Saci_0406 displays structural similarity, but low sequence homology, to bacterial type-I pilins. Thread subunits are interconnected via donor strand complementation, a feature reminiscent of bacterial chaperone-usher pili. However, despite these similarities in overall architecture, archaeal threads appear to have evolved independently and are likely assembled by a distinct mechanism.


Assuntos
Archaea , Elétrons , Microscopia Crioeletrônica , Citoesqueleto , Software
11.
Nat Commun ; 12(1): 6316, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728631

RESUMO

The Ff family of filamentous bacteriophages infect gram-negative bacteria, but do not cause lysis of their host cell. Instead, new virions are extruded via the phage-encoded pIV protein, which has homology with bacterial secretins. Here, we determine the structure of pIV from the f1 filamentous bacteriophage at 2.7 Å resolution by cryo-electron microscopy, the first near-atomic structure of a phage secretin. Fifteen f1 pIV subunits assemble to form a gated channel in the bacterial outer membrane, with associated soluble domains projecting into the periplasm. We model channel opening and propose a mechanism for phage egress. By single-cell microfluidics experiments, we demonstrate the potential for secretins such as pIV to be used as adjuvants to increase the uptake and efficacy of antibiotics in bacteria. Finally, we compare the f1 pIV structure to its homologues to reveal similarities and differences between phage and bacterial secretins.


Assuntos
Microscopia Crioeletrônica/métodos , Inovirus/metabolismo , Secretina/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Transporte Biológico , Elementos Estruturais de Proteínas , Alinhamento de Sequência , Proteínas não Estruturais Virais/metabolismo
12.
J Cell Sci ; 134(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34106255

RESUMO

Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homologue of NDUFA11. Animals homozygous for a CRISPR-Cas9-generated knockout allele of nduf-11 arrested at the second larval (L2) development stage. Reducing (but not eliminating) expression using RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its supercomplexes and perturbation of respiratory function. The loss of NADH dehydrogenase activity was compensated by enhanced complex II activity, with the potential for detrimental reactive oxygen species (ROS) production. Cryo-electron tomography highlighted aberrant morphology of cristae and widening of both cristae junctions and the intermembrane space. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I and supercomplex maintenance. This highlights the importance of respiratory complex integrity for health and the potential for its perturbation to cause mitochondrial disease. This article has an associated First Person interview with Amber Knapp-Wilson, joint first author of the paper.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Animais , Caenorhabditis elegans , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
13.
Nat Commun ; 11(1): 2231, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376942

RESUMO

Type IV pili are flexible filaments on the surface of bacteria, consisting of a helical assembly of pilin proteins. They are involved in bacterial motility (twitching), surface adhesion, biofilm formation and DNA uptake (natural transformation). Here, we use cryo-electron microscopy and mass spectrometry to show that the bacterium Thermus thermophilus produces two forms of type IV pilus ('wide' and 'narrow'), differing in structure and protein composition. Wide pili are composed of the major pilin PilA4, while narrow pili are composed of a so-far uncharacterized pilin which we name PilA5. Functional experiments indicate that PilA4 is required for natural transformation, while PilA5 is important for twitching motility.


Assuntos
Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Thermus thermophilus/ultraestrutura , Microscopia Crioeletrônica , DNA/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Espectrometria de Massas , Modelos Moleculares , Estrutura Secundária de Proteína , Thermus thermophilus/química , Thermus thermophilus/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(50): 25278-25286, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767763

RESUMO

Surface protein layers (S-layers) often form the only structural component of the archaeal cell wall and are therefore important for cell survival. S-layers have a plethora of cellular functions including maintenance of cell shape, osmotic, and mechanical stability, the formation of a semipermeable protective barrier around the cell, and cell-cell interaction, as well as surface adhesion. Despite the central importance of S-layers for archaeal life, their 3-dimensional (3D) architecture is still poorly understood. Here we present detailed 3D electron cryomicroscopy maps of archaeal S-layers from 3 different Sulfolobus strains. We were able to pinpoint the positions and determine the structure of the 2 subunits SlaA and SlaB. We also present a model describing the assembly of the mature S-layer.


Assuntos
Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Sulfolobus/metabolismo , Microscopia Crioeletrônica , Dimerização , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Sulfolobus/química , Sulfolobus/genética , Sulfolobus/ultraestrutura
15.
Methods Mol Biol ; 1567: 315-336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28276027

RESUMO

The visualization of membrane protein complexes in their natural membrane environment is a major goal in an emerging area of research termed structural cell biology. Such approaches provide important information on the spatial distribution of protein complexes in their resident cellular membrane systems and on the structural organization of multi-subunit membrane protein assemblies. We have developed a method to specifically label active membrane protein complexes in their native membrane environment with electron-dense nanoparticles coupled to an activating ligand, in order to visualize them by electron cryo-tomography. As an example, we describe here the depiction of preprotein import sites of mitochondria, formed by the translocase of the outer membrane (TOM complex) and the presequence translocase of the inner membrane (TIM23 complex). Active import sites are selectively labeled via a biotinylated, quantum dot-coupled preprotein that is arrested in translocation across the outer and inner mitochondrial membranes. Additionally, a related method is described for direct labeling of mitochondrial outer membrane proteins that does not depend on binding of a ligand.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Proteínas de Transporte da Membrana Mitocondrial , Complexos Multiproteicos , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Complexos Multiproteicos/metabolismo , Mutação , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Software , Estatística como Assunto , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
16.
J Biol Chem ; 291(28): 14448-56, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226590

RESUMO

Secretins are versatile outer membrane pores used by many bacteria to secrete proteins, toxins, or filamentous phages; extrude type IV pili (T4P); or take up DNA. Extrusion of T4P and natural transformation of DNA in the thermophilic bacterium Thermus thermophilus requires a unique secretin complex comprising six stacked rings, a membrane-embedded cone structure, and two gates that open and close a central channel. To investigate the role of distinct domains in ring and gate formation, we examined a set of deletion derivatives by cryomicroscopy techniques. Here we report that maintaining the N0 ring in the deletion derivatives led to stable PilQ complexes. Analyses of the variants unraveled that an N-terminal domain comprising a unique ßßßαß fold is essential for the formation of gate 2. Furthermore, we identified four ßαßßα domains essential for the formation of the N2 to N5 rings. Mutant studies revealed that deletion of individual ring domains significantly reduces piliation. The N1, N2, N4, and N5 deletion mutants were significantly impaired in T4P-mediated twitching motility, whereas the motility of the N3 mutant was comparable with that of wild-type cells. This indicates that the deletion of the N3 ring leads to increased pilus dynamics, thereby compensating for the reduced number of pili of the N3 mutant. All mutants exhibit a wild-type natural transformation phenotype, leading to the conclusion that DNA uptake is independent of functional T4P.


Assuntos
Ativação do Canal Iônico , Secretina/metabolismo , Thermus thermophilus/metabolismo , Conformação Proteica , Secretina/química , Relação Estrutura-Atividade , Thermus thermophilus/química
17.
J Mol Biol ; 428(6): 1041-1052, 2016 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-26827728

RESUMO

The highly organized mitochondrial inner membrane harbors enzymes that produce the bulk of cellular ATP via oxidative phosphorylation. The majority of inner membrane protein precursors are synthesized in the cytosol. Precursors with a cleavable presequence are imported by the presequence translocase (TIM23 complex), while other precursors containing internal targeting signals are imported by the carrier translocase (TIM22 complex). Both TIM23 and TIM22 are activated by the transmembrane electrochemical potential. Many small inner membrane proteins, however, do not resemble canonical TIM23 or TIM22 substrates and their mechanism of import is unknown. We report that subunit e of the F1Fo-ATP synthase, a small single-spanning inner membrane protein that is critical for inner membrane organization, is imported by TIM23 in a process that does not require activation by the membrane potential. Absence of positively charged residues at the matrix-facing amino-terminus of subunit e facilitates membrane potential-independent import. Instead, engineered positive charges establish a dependence of the import reaction on the electrochemical potential. Our results have two major implications. First, they reveal an unprecedented pathway of protein import into the mitochondrial inner membrane, which is mediated by TIM23. Second, they directly demonstrate the role of the membrane potential in driving the electrophoretic transport of positively charged protein segments across the inner membrane.


Assuntos
Potenciais da Membrana , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise Mutacional de DNA , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/genética , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética
18.
Elife ; 42015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25997099

RESUMO

Proteins of the secretin family form large macromolecular complexes, which assemble in the outer membrane of Gram-negative bacteria. Secretins are major components of type II and III secretion systems and are linked to extrusion of type IV pili (T4P) and to DNA uptake. By electron cryo-tomography of whole Thermus thermophilus cells, we determined the in situ structure of a T4P molecular machine in the open and the closed state. Comparison reveals a major conformational change whereby the N-terminal domains of the central secretin PilQ shift by ~30 Å, and two periplasmic gates open to make way for pilus extrusion. Furthermore, we determine the structure of the assembled pilus.


Assuntos
Fímbrias Bacterianas/fisiologia , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Secretina/metabolismo , Thermus thermophilus/química , Microscopia Crioeletrônica , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Conformação Proteica
19.
J Vis Exp ; (91): 51228, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25285856

RESUMO

Electron cryo-tomography is a powerful tool in structural biology, capable of visualizing the three-dimensional structure of biological samples, such as cells, organelles, membrane vesicles, or viruses at molecular detail. To achieve this, the aqueous sample is rapidly vitrified in liquid ethane, which preserves it in a close-to-native, frozen-hydrated state. In the electron microscope, tilt series are recorded at liquid nitrogen temperature, from which 3D tomograms are reconstructed. The signal-to-noise ratio of the tomographic volume is inherently low. Recognizable, recurring features are enhanced by subtomogram averaging, by which individual subvolumes are cut out, aligned and averaged to reduce noise. In this way, 3D maps with a resolution of 2 nm or better can be obtained. A fit of available high-resolution structures to the 3D volume then produces atomic models of protein complexes in their native environment. Here we show how we use electron cryo-tomography to study the in situ organization of large membrane protein complexes in mitochondria. We find that ATP synthases are organized in rows of dimers along highly curved apices of the inner membrane cristae, whereas complex I is randomly distributed in the membrane regions on either side of the rows. By subtomogram averaging we obtained a structure of the mitochondrial ATP synthase dimer within the cristae membrane.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/análise , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Multimerização Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/ultraestrutura
20.
Nat Commun ; 5: 4129, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24942077

RESUMO

Unravelling the structural organization of membrane protein machines in their active state and native lipid environment is a major challenge in modern cell biology research. Here we develop the STAMP (Specifically TArgeted Membrane nanoParticle) technique as a strategy to localize protein complexes in situ by electron cryotomography (cryo-ET). STAMP selects active membrane protein complexes and marks them with quantum dots. Taking advantage of new electron detector technology that is currently revolutionizing cryotomography in terms of achievable resolution, this approach enables us to visualize the three-dimensional distribution and organization of protein import sites in mitochondria. We show that import sites cluster together in the vicinity of crista membranes, and we reveal unique details of the mitochondrial protein import machinery in action. STAMP can be used as a tool for site-specific labelling of a multitude of membrane proteins by cryo-ET in the future.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas de Membrana/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas de Membrana/química , Mitocôndrias/química , Mitocôndrias/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...