Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 1021038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338478

RESUMO

The lymphatic vasculature of the liver is vital for liver function as it maintains fluid and protein homeostasis and is important for immune cell transport to the lymph node. Chronic liver disease is associated with increased expression of inflammatory mediators including oxidized low-density lipoprotein (oxLDL). Intrahepatic levels of oxLDL are elevated in nonalcoholic fatty liver disease (NAFLD), chronic hepatitis C infection (HCV), alcohol-associated liver disease (ALD), and cholestatic liver diseases. To determine if liver lymphatic function is impaired in chronic liver diseases, in which increased oxLDL has been documented, we measured liver lymphatic function in murine models of NAFLD, ALD and primary sclerosing cholangitis (PSC). We found that Mdr2-/- (PSC), Lieber-DeCarli ethanol fed (ALD) and high fat and high cholesterol diet fed (NAFLD) mice all had a significant impairment in the ability to traffic FITC labeled dextran from the liver parenchyma to the liver draining lymph nodes. Utilizing an in vitro permeability assay, we found that oxLDL decreased the permeability of lymphatic endothelial cells (LEC)s, but not liver sinusoidal endothelial cells (LSEC)s. Here we demonstrate that LECs and LSECs differentially regulate SRC-family kinases, MAPK kinase and VE-Cadherin in response to oxLDL. Furthermore, Vascular Endothelial Growth Factor (VEGF)C or D (VEGFR-3 ligands) appear to regulate VE-Cadherin expression as well as decrease cellular permeability of LECs in vitro and in vivo after oxLDL treatment. These findings suggest that oxLDL acts to impede protein transport through the lymphatics through tightening of the cell-cell junctions. Importantly, engagement of VEGFR-3 by its ligands prevents VE-Cadherin upregulation and improves lymphatic permeability. These studies provide a potential therapeutic target to restore liver lymphatic function and improve liver function.

3.
Cell Mol Gastroenterol Hepatol ; 11(2): 573-595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32961356

RESUMO

BACKGROUND AND AIMS: As the incidence of nonalcoholic steatohepatitis (NASH) continues to rise, understanding how normal liver functions are affected during disease is required before developing novel therapeutics which could reduce morbidity and mortality. However, very little is understood about how the transport of proteins and cells from the liver by the lymphatic vasculature is affected by inflammatory mediators or during disease. METHODS: To answer these questions, we utilized a well-validated mouse model of NASH and exposure to highly oxidized low density lipoprotein (oxLDL). In addition to single cell sequencing, multiplexed immunofluorescence and metabolomic analysis of liver lymphatic endothelial cells (LEC)s we evaluated lymphatic permeability and transport both in vitro and in vivo. RESULTS: Confirming similarities between human and mouse liver lymphatic vasculature in NASH, we found that the lymphatic vasculature expands as disease progresses and results in the downregulation of genes important to lymphatic identity and function. We also demonstrate, in mice with NASH, that fluorescein isothiocyanate (FITC) dextran does not accumulate in the liver draining lymph node upon intrahepatic injection, a defect that was rescued with therapeutic administration of the lymphatic growth factor, recombinant vascular endothelial growth factor C (rVEGFC). Similarly, exposure to oxLDL reduced the amount of FITC-dextran in the portal draining lymph node and through an LEC monolayer. We provide evidence that the mechanism by which oxLDL impacts lymphatic permeability is via a reduction in Prox1 expression which decreases lymphatic specific gene expression, impedes LEC metabolism and reorganizes the highly permeable lymphatic cell-cell junctions which are a defining feature of lymphatic capillaries. CONCLUSIONS: We identify oxLDL as a major contributor to decreased lymphatic permeability in the liver, a change which is consistent with decreased protein homeostasis and increased inflammation during chronic liver disease.


Assuntos
Lipoproteínas LDL/metabolismo , Fígado/patologia , Vasos Linfáticos/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo , Humanos , Junções Intercelulares/patologia , Fígado/imunologia , Vasos Linfáticos/citologia , Vasos Linfáticos/imunologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Permeabilidade , Proteostase/genética , Proteostase/imunologia , RNA-Seq , Análise de Célula Única , Proteínas Supressoras de Tumor/metabolismo
4.
Clin Liver Dis (Hoboken) ; 15(3): 105-109, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32257121

RESUMO

http://aasldpubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)2046-2484/video/15-3-reading-mack a video presentation of this article.

5.
Front Physiol ; 10: 1579, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31992991

RESUMO

Chronic liver disease (CLD) is a global health epidemic causing ∼2 million deaths annually worldwide. As the incidence of CLD is expected to rise over the next decade, understanding the cellular and molecular mediators of CLD is critical for developing novel therapeutics. Common characteristics of CLD include steatosis, inflammation, and cholesterol accumulation in the liver. While the lymphatic system in the liver has largely been overlooked, the liver lymphatics, as in other organs, are thought to play a critical role in maintaining normal hepatic function by assisting in the removal of protein, cholesterol, and immune infiltrate. Lymphatic growth, permeability, and/or hyperplasia in non-liver organs has been demonstrated to be caused by obesity or hypercholesterolemia in humans and animal models. While it is still unclear if changes in permeability occur in liver lymphatics, the lymphatics do expand in number and size in all disease etiologies tested. This is consistent with the lymphatic endothelial cells (LEC) upregulating proliferation specific genes, however, other transcriptional changes occur in liver LECs that are dependent on the inflammatory mediators that are specific to the disease etiology. Whether these changes induce lymphatic dysfunction or if they impact liver function has yet to be directly addressed. Here, we will review what is known about liver lymphatics in health and disease, what can be learned from recent work on the influence of obesity and hypercholesterolemia on the lymphatics in other organs, changes that occur in LECs in the liver during disease and outstanding questions in the field.

6.
Sleep ; 39(3): 559-64, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26715231

RESUMO

STUDY OBJECTIVES: Insomnia, particularly in later life, may raise the risk for chronic diseases of aging and mortality through its effect on cellular aging. The current study examines the effects of insomnia on telomere length, a measure of cellular aging, and tests whether insomnia interacts with chronological age to increase cellular aging. METHODS: A total of 126 males and females (60-88 y) were assessed for insomnia using the Diagnostic and Statistical Manual IV criterion for primary insomnia and the International Classification of Sleep Disorders, Second Edition for general insomnia (45 insomnia cases; 81 controls). Telomere length in peripheral blood mononuclear cells (PBMC) was determined using real-time quantitative polymerase chain reaction (qPCR) methodology. RESULTS: In the analysis of covariance model adjusting for body mass index and sex, age (60-69 y versus 70-88 y) and insomnia diagnosis interacted to predict shorter PBMC telomere length (P = 0.04). In the oldest age group (70-88 y), PBMC telomere length was significantly shorter in those with insomnia, mean (standard deviation) M(SD) = 0.59(0.2) compared to controls with no insomnia M(SD) = 0.78(0.4), P = 0.04. In the adults aged 60-69 y, PBMC telomere length was not different between insomnia cases and controls, P = 0.44. CONCLUSIONS: Insomnia is associated with shorter PBMC telomere length in adults aged 70-88 y, but not in those younger than 70 y, suggesting that clinically severe sleep disturbances may increase cellular aging, especially in the later years of life. These findings highlight insomnia as a vulnerability factor in later life, with implications for risk for diseases of aging.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Senescência Celular/genética , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/patologia , Telômero/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Doença Crônica , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Risco , Distúrbios do Início e da Manutenção do Sono/diagnóstico , Telômero/genética
7.
Neuroimmunomodulation ; 20(3): 127-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23407214

RESUMO

BACKGROUND: Proinflammatory pathways may be activated under conditions of painful stress, which is hypothesized to worsen the experience of pain and place medically vulnerable populations at risk for increased morbidity. OBJECTIVES: To evaluate the effects of pain and subjective pain-related stress on proinflammatory activity. METHODS: A total of 19 healthy control subjects underwent a single standard cold-pressor pain test (CPT) and a no-pain control condition. Indicators of pain and stress were measured and related to inflammatory immune responses [CD8+ cells expressing the integrin molecule CD11a (CD811a), interleukin (IL)-1 receptor agonist (IL-1RA), and IL-6] immediately following the painful stimulus and compared to responses under no-pain conditions. Heart rate and mean arterial pressure were measured as indicators of sympathetic stimulation. RESULTS: CPT was clearly painful and generated an activation of the sympathetic nervous system. CD811a increased in both conditions, but with no statistically significantly greater increase following CPT (p<0.06). IL-1RA demonstrated a non-statistically significant increase following CPT (p<0.07). The change in IL-6 following CPT differed significantly from the response seen in the control condition (p<0.02). CONCLUSIONS: These findings suggest that CP acute pain may affect proinflammatory pathways, possibly through mechanisms related to adrenergic activation.


Assuntos
Mediadores da Inflamação/sangue , Dor/complicações , Dor/psicologia , Estresse Psicológico/etiologia , Estresse Psicológico/imunologia , Adolescente , Adulto , Pressão Sanguínea/fisiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Dor/etiologia , Medição da Dor , Pressão/efeitos adversos , Estresse Psicológico/sangue , Adulto Jovem
8.
FASEB J ; 21(11): 2840-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17475921

RESUMO

Carbon monoxide (CO) exposure of an islet donor frequently leads to islet allograft long-term survival and tolerance in recipients. We show here that CO confers its protective effects at least in part by suppressing Toll-like receptor 4 (TLR4) up-regulation in pancreatic beta cells. TLR4 is normally up-regulated in islets during the isolation procedure; donor treatment with CO suppresses TLR4 expression in isolated islets as well as in transplanted grafts. TLR4 up-regulation allows initiation of inflammation, which leads to islet allograft rejection; islet grafts from TLR4-deficient mice survive indefinitely in BALB/c recipients and show significantly less inflammation at various days after transplantation compared with grafts from a control donor. Isolated islets preinfected with a TLR4 dominant negative virus before transplantation demonstrated prolonged survival in recipients. Despite the salutary effects of TLR4 suppression, HO-1 expression is still needed in the recipient for islet survival: TLR4-deficient islets were rejected promptly after being transplanted into recipients in which HO-1 activity was blocked. In addition, incubation of an insulinoma cell line, betaTC3, with an anti-TLR4 antibody protects those cells from cytokine-induced apoptosis. Our data suggest that TLR4 induction in beta cells is involved in beta cell death and graft rejection after transplantation. CO exposure protects islets from rejection by blocking TLR4 up-regulation.


Assuntos
Monóxido de Carbono/farmacologia , Diabetes Mellitus Experimental/terapia , Sobrevivência de Enxerto/fisiologia , Transplante das Ilhotas Pancreáticas , Receptor 4 Toll-Like/antagonistas & inibidores , Adenoviridae/genética , Animais , Western Blotting , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Tolerância Imunológica/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/citologia , Receptor 4 Toll-Like/metabolismo , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...