Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 120(23): 5231-5242, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34757076

RESUMO

Stochasticity from gene expression in single cells is known to drive metabolic heterogeneity at the level of cellular populations, which is understood to have important consequences for issues such as microbial drug tolerance and treatment of human diseases like cancer. Despite considerable advancements in profiling the genomes, transcriptomes, and proteomes of single cells, it remains difficult to experimentally characterize their metabolism at the genome scale. Computational methods could bridge this gap toward a systems understanding of single-cell biology. To address this challenge, we developed stochastic simulation algorithm with flux-balance analysis embedded (SSA-FBA), a computational framework for simulating the stochastic dynamics of the metabolism of individual cells using genome-scale metabolic models with experimental estimates of gene expression and enzymatic reaction rate parameters. SSA-FBA extends the constraint-based modeling formalism of metabolic network modeling to the single-cell regime, enabling simulation when experimentation is intractable. We also developed an efficient implementation of SSA-FBA that leverages the topology of embedded flux-balance analysis models to significantly reduce the computational cost of simulation. As a preliminary case study, we built a reduced single-cell model of Mycoplasma pneumoniae and used SSA-FBA to illustrate the role of stochasticity on the dynamics of metabolism at the single-cell level.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Algoritmos , Simulação por Computador , Humanos
2.
Cell Syst ; 11(2): 109-120, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32853539

RESUMO

Like many scientific disciplines, dynamical biochemical modeling is hindered by irreproducible results. This limits the utility of biochemical models by making them difficult to understand, trust, or reuse. We comprehensively list the best practices that biochemical modelers should follow to build reproducible biochemical model artifacts-all data, model descriptions, and custom software used by the model-that can be understood and reused. The best practices provide advice for all steps of a typical biochemical modeling workflow in which a modeler collects data; constructs, trains, simulates, and validates the model; uses the predictions of a model to advance knowledge; and publicly shares the model artifacts. The best practices emphasize the benefits obtained by using standard tools and formats and provides guidance to modelers who do not or cannot use standards in some stages of their modeling workflow. Adoption of these best practices will enhance the ability of researchers to reproduce, understand, and reuse biochemical models.


Assuntos
Simulação por Computador/normas , Biologia de Sistemas/métodos , Humanos
4.
Curr Opin Syst Biol ; 7: 8-15, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29806041

RESUMO

Whole-cell dynamical models of human cells are a central goal of systems biology. Such models could help researchers understand cell biology and help physicians treat disease. Despite significant challenges, we believe that human whole-cell models are rapidly becoming feasible. To develop a plan for achieving human whole-cell models, we analyzed the existing models of individual cellular pathways, surveyed the biomodeling community, and reflected on our experience developing whole-cell models of bacteria. Based on these analyses, we propose a plan for a project, termed the Human Whole-Cell Modeling Project, to achieve human whole-cell models. The foundations of the plan include technology development, standards development, and interdisciplinary collaboration.

5.
Curr Opin Biotechnol ; 51: 97-102, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29275251

RESUMO

Whole-cell computational models aim to predict cellular phenotypes from genotype by representing the entire genome, the structure and concentration of each molecular species, each molecular interaction, and the extracellular environment. Whole-cell models have great potential to transform bioscience, bioengineering, and medicine. However, numerous challenges remain to achieve whole-cell models. Nevertheless, researchers are beginning to leverage recent progress in measurement technology, bioinformatics, data sharing, rule-based modeling, and multi-algorithmic simulation to build the first whole-cell models. We anticipate that ongoing efforts to develop scalable whole-cell modeling tools will enable dramatically more comprehensive and more accurate models, including models of human cells.


Assuntos
Bioengenharia/métodos , Fenômenos Fisiológicos Celulares , Biologia Computacional/métodos , Modelos Biológicos , Animais , Humanos
6.
Nat Neurosci ; 20(9): 1217-1224, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714951

RESUMO

We systematically analyzed postzygotic mutations (PZMs) in whole-exome sequences from the largest collection of trios (5,947) with autism spectrum disorder (ASD) available, including 282 unpublished trios, and performed resequencing using multiple independent technologies. We identified 7.5% of de novo mutations as PZMs, 83.3% of which were not described in previous studies. Damaging, nonsynonymous PZMs within critical exons of prenatally expressed genes were more common in ASD probands than controls (P < 1 × 10-6), and genes carrying these PZMs were enriched for expression in the amygdala (P = 5.4 × 10-3). Two genes (KLF16 and MSANTD2) were significantly enriched for PZMs genome-wide, and other PZMs involved genes (SCN2A, HNRNPU and SMARCA4) whose mutation is known to cause ASD or other neurodevelopmental disorders. PZMs constitute a significant proportion of de novo mutations and contribute importantly to ASD risk.


Assuntos
Transtorno do Espectro Autista/genética , Bases de Dados Genéticas/tendências , Variação Genética/genética , Mutação de Sentido Incorreto/genética , Predisposição Genética para Doença/genética , Humanos , Mosaicismo , Zigoto/fisiologia
7.
IEEE Trans Biomed Eng ; 63(10): 2015-20, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27429432

RESUMO

OBJECTIVE: Reproducibility is the cornerstone of the scientific method. However, currently, many systems biology models cannot easily be reproduced. This paper presents methods that address this problem. METHODS: We analyzed the recent Mycoplasma genitalium whole-cell (WC) model to determine the requirements for reproducible modeling. RESULTS: We determined that reproducible modeling requires both repeatable model building and repeatable simulation. CONCLUSION: New standards and simulation software tools are needed to enhance and verify the reproducibility of modeling. New standards are needed to explicitly document every data source and assumption, and new deterministic parallel simulation tools are needed to quickly simulate large, complex models. SIGNIFICANCE: We anticipate that these new standards and software will enable researchers to reproducibly build and simulate more complex models, including WC models.


Assuntos
Modelos Biológicos , Biologia de Sistemas/métodos , Biologia de Sistemas/normas , Simulação por Computador , Técnicas Citológicas , Humanos , Mycoplasma genitalium/citologia , Reprodutibilidade dos Testes
8.
IEEE Trans Biomed Eng ; 63(10): 2007-14, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27305665

RESUMO

OBJECTIVE: Whole-cell (WC) modeling is a promising tool for biological research, bioengineering, and medicine. However, substantial work remains to create accurate comprehensive models of complex cells. METHODS: We organized the 2015 Whole-Cell Modeling Summer School to teach WC modeling and evaluate the need for new WC modeling standards and software by recoding a recently published WC model in the Systems Biology Markup Language. RESULTS: Our analysis revealed several challenges to representing WC models using the current standards. CONCLUSION: We, therefore, propose several new WC modeling standards, software, and databases. SIGNIFICANCE: We anticipate that these new standards and software will enable more comprehensive models.


Assuntos
Simulação por Computador , Modelos Biológicos , Software , Biologia de Sistemas/normas , Biologia Computacional , Técnicas Citológicas , Feminino , Humanos , Masculino , Biologia de Sistemas/educação , Biologia de Sistemas/organização & administração
9.
Neuron ; 87(6): 1215-1233, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26402605

RESUMO

Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1).


Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Loci Gênicos/genética , Variação Genética/genética , Mapas de Interação de Proteínas/genética , Feminino , Humanos , Masculino
10.
Nature ; 515(7526): 209-15, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25363760

RESUMO

The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Cromatina/genética , Predisposição Genética para Doença/genética , Mutação/genética , Sinapses/metabolismo , Transcrição Gênica/genética , Sequência de Aminoácidos , Transtornos Globais do Desenvolvimento Infantil/patologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Exoma/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Rede Nervosa/metabolismo , Razão de Chances
11.
Nat Genet ; 46(8): 881-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25038753

RESUMO

A key component of genetic architecture is the allelic spectrum influencing trait variability. For autism spectrum disorder (herein termed autism), the nature of the allelic spectrum is uncertain. Individual risk-associated genes have been identified from rare variation, especially de novo mutations. From this evidence, one might conclude that rare variation dominates the allelic spectrum in autism, yet recent studies show that common variation, individually of small effect, has substantial impact en masse. At issue is how much of an impact relative to rare variation this common variation has. Using a unique epidemiological sample from Sweden, new methods that distinguish total narrow-sense heritability from that due to common variation and synthesis of results from other studies, we reach several conclusions about autism's genetic architecture: its narrow-sense heritability is ∼52.4%, with most due to common variation, and rare de novo mutations contribute substantially to individual liability, yet their contribution to variance in liability, 2.6%, is modest compared to that for heritable variation.


Assuntos
Transtorno Autístico/genética , Mutação , Adolescente , Adulto , Idoso , Alelos , Criança , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Suécia , Adulto Jovem
12.
Am J Hum Genet ; 93(4): 607-19, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24094742

RESUMO

Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease. Most studies of CNV carried out to date have made use of chromosome microarray and have had a lower size limit for detection of about 30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare exonic CNV in the size range of 1-30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n = 811, mean per-target read depth = 161) and observed a significant increase in the burden of rare (MAF ≤1%) 1-30 kb CNV, 1-30 kb deletions, and 1-10 kb deletions in ASD. CNV in the 1-30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary, our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare 1-30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in developmental delay syndromes.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Variações do Número de Cópias de DNA , Exoma , Autofagia/genética , Sequência de Bases , Estudos de Casos e Controles , Criança , Éxons , Deleção de Genes , Predisposição Genética para Doença , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA/métodos
13.
Cancer Discov ; 2(5): 401-4, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22588877

RESUMO

The cBio Cancer Genomics Portal (http://cbioportal.org) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies. The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Genômica , Neoplasias/genética , Humanos , Internet
14.
Plant Physiol ; 152(2): 500-15, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20007449

RESUMO

Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Genômica , Plantas/genética , Biologia de Sistemas , Biologia Computacional/métodos , Bases de Dados Genéticas , Redes Reguladoras de Genes , Genes de Plantas , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...