Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Eur J Endocrinol ; 189(3): K7-K14, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37740949

RESUMO

Ovarian dysgenesis (OD), an XX disorder of sex development, presents with primary amenorrhea, hypergonadotrophic hypogonadism, and infertility. In an Ashkenazi Jewish patient with OD, whole exome sequencing identified compound heterozygous frameshifts in FIGNL1, a DNA damage response (DDR) gene: c.189del and c.1519_1523del. Chromosomal breakage was significantly increased in patient cells, both spontaneously, and following mitomycin C exposure. Transfection of DYK-tagged FIGNL1 constructs in HEK293 cells showed no detectable protein in FIGNL1c.189del and truncation with reduced expression in FIGNL1c.1519_1523del (64% of wild-type [WT], P = .003). FIGNL1 forms nuclear foci increased by phleomycin treatment (20.6 ± 1.6 vs 14.8 ± 2.4, P = .02). However, mutant constructs showed reduced DYK-FIGNL1 foci formation in non-treated cells (0.8 ± 0.9 and 5.6 ± 1.5 vs 14.8 ± 2.4 in DYK-FIGNL1WT, P < .001) and no increase with phleomycin treatment. In conclusion, FIGNL1 loss of function is a newly characterized OD gene, highlighting the DDR pathway's role in ovarian development and maintenance and suggesting chromosomal breakage as an assessment tool in XX-DSD patients.


Assuntos
Quebra Cromossômica , Disgenesia Gonadal , Feminino , Humanos , ATPases Associadas a Diversas Atividades Celulares , Mutação da Fase de Leitura , Células HEK293 , Proteínas Associadas aos Microtúbulos , Proteínas Nucleares , Fleomicinas
2.
Cells ; 12(11)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37296624

RESUMO

ATM depletion is associated with the multisystemic neurodegenerative syndrome ataxia-telangiectasia (A-T). The exact linkage between neurodegeneration and ATM deficiency has not been established yet, and no treatment is currently available. In this study, we aimed to identify synthetic viable genes in ATM deficiency to highlight potential targets for the treatment of neurodegeneration in A-T. We inhibited ATM kinase activity using the background of a genome-wide haploid pluripotent CRISPR/Cas9 loss-of-function library and examined which mutations confer a growth advantage on ATM-deficient cells specifically. Pathway enrichment analysis of the results revealed the Hippo signaling pathway as a major negative regulator of cellular growth upon ATM inhibition. Indeed, genetic perturbation of the Hippo pathway genes SAV1 and NF2, as well as chemical inhibition of this pathway, specifically promoted the growth of ATM-knockout cells. This effect was demonstrated in both human embryonic stem cells and neural progenitor cells. Therefore, we suggest the Hippo pathway as a candidate target for the treatment of the devastating cerebellar atrophy associated with A-T. In addition to the Hippo pathway, our work points out additional genes, such as the apoptotic regulator BAG6, as synthetic viable with ATM-deficiency. These genes may help to develop drugs for the treatment of A-T patients as well as to define biomarkers for resistance to ATM inhibition-based chemotherapies and to gain new insights into the ATM genetic network.


Assuntos
Ataxia Telangiectasia , Células-Tronco Embrionárias Humanas , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Via de Sinalização Hippo , Células-Tronco Embrionárias Humanas/metabolismo , Redes Reguladoras de Genes , Ataxia Telangiectasia/tratamento farmacológico , Chaperonas Moleculares/metabolismo
3.
Cells ; 11(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36231059

RESUMO

Cancer development is often connected to impaired DNA repair and DNA damage signaling pathways. The presence of DNA damage in cells activates DNA damage response, which is a complex cellular signaling network that includes DNA repair, activation of the cell cycle checkpoints, cellular senescence, and apoptosis. DNA double-strand breaks (DSBs) are toxic lesions that are mainly repaired by the non-homologous end joining and homologous recombination repair (HRR) pathways. Estrogen-dependent cancers, like breast and ovarian cancers, are frequently associated with mutations in genes that play a role in HRR. The female sex hormone estrogen binds and activates the estrogen receptors (ERs), ERα, ERß and G-protein-coupled ER 1 (GPER1). ERα drives proliferation, while ERß inhibits cell growth. Estrogen regulates the transcription, stability and activity of numerus DDR factors and DDR factors in turn modulate ERα expression, stability and transcriptional activity. Additionally, estrogen stimulates DSB formation in cells as part of its metabolism and proliferative effect. In this review, we will present an overview on the crosstalk between estrogen and the cellular response to DSBs. We will discuss how estrogen regulates DSB signaling and repair, and how DDR factors modulate the expression, stability and activity of estrogen. We will also discuss how the regulation of HRR genes by estrogen promotes the development of estrogen-dependent cancers.


Assuntos
Quebras de DNA de Cadeia Dupla , Neoplasias , DNA/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios , Feminino , Proteínas de Ligação ao GTP/metabolismo , Hormônios Esteroides Gonadais , Humanos , Neoplasias/genética , Receptores de Estrogênio/metabolismo , Reparo de DNA por Recombinação
4.
Int Breastfeed J ; 17(1): 61, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028836

RESUMO

BACKGROUND: Since March 2020, the world has been coping with the COVID-19 pandemic. One group particularly affected were mothers of newborns. The Israeli government imposed three lockdowns, with the first from 14 March to 11 May 2020. It had the strictest rules, with effects among mothers including panic and stress. These mothers coped with new challenges as they were often without help from the extended family, could not meet lactation counsellors in person, and stayed longer on maternity leave. METHODS: A cross-sectional, observational study collected data via an online anonymous survey in Israel. From 27 April 2020 to 11 May 2020, the survey was distributed through Facebook groups for breastfeeding mothers. It contained 32 multiple choice and 10 open questions. Multivariate logistic regression analysis, with adjustment for potential factors, was performed to determine the pandemic-related factors influencing breastfeeding, including the decision to breastfeed longer than planned. RESULTS: Five hundred eighty women participated in the survey. Most mothers were over 30, (mean age 32.55), married with an academic degree (81.5%). 127 (22%) women reported changes in their lactation plans. 85 (15%) responded that due to the COVID -19 pandemic they extended their breastfeeding period and 42 (7%) reported shortening it. A significant relationship was found between this extension and returning to work later than expected adjusted OR = 2.38 95% CI 1.46,3.87). When asked to rank steps national health authorities should take to encourage breastfeeding, the highest agreement (96%) was with maternity leave extension. More than 90% believed that receiving breastfeeding counselling at home and/or in hospital will encourage breastfeeding. CONCLUSIONS: This study demonstrated that most women did not change their breastfeeding patterns because of the lockdown though some did experience difficulties. Some lengthened their breastfeeding period, as, due to the pandemic, they stayed home longer than expected. This finding should be considered for future emergency situations.


Assuntos
Aleitamento Materno , COVID-19 , Adulto , Controle de Doenças Transmissíveis , Estudos Transversais , Feminino , Humanos , Recém-Nascido , Israel , Masculino , Pandemias , Gravidez
5.
Genome Res ; 29(3): 439-448, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718334

RESUMO

The homologous recombination repair (HRR) pathway repairs DNA double-strand breaks in an error-free manner. Mutations in HRR genes can result in increased mutation rate and genomic rearrangements, and are associated with numerous genetic disorders and cancer. Despite intensive research, the HRR pathway is not yet fully mapped. Phylogenetic profiling analysis, which detects functional linkage between genes using coevolution, is a powerful approach to identify factors in many pathways. Nevertheless, phylogenetic profiling has limited predictive power when analyzing pathways with complex evolutionary dynamics such as the HRR. To map novel HRR genes systematically, we developed clade phylogenetic profiling (CladePP). CladePP detects local coevolution across hundreds of genomes and points to the evolutionary scale (e.g., mammals, vertebrates, animals, plants) at which coevolution occurred. We found that multiscale coevolution analysis is significantly more biologically relevant and sensitive to detect gene function. By using CladePP, we identified dozens of unrecognized genes that coevolved with the HRR pathway, either globally across all eukaryotes or locally in different clades. We validated eight genes in functional biological assays to have a role in DNA repair at both the cellular and organismal levels. These genes are expected to play a role in the HRR pathway and might lead to a better understanding of missing heredity in HRR-associated cancers (e.g., heredity breast and ovarian cancer). Our platform presents an innovative approach to predict gene function, identify novel factors related to different diseases and pathways, and characterize gene evolution.


Assuntos
Evolução Molecular , Reparo de DNA por Recombinação , Software , Animais , Enzimas Reparadoras do DNA/genética , Loci Gênicos , Filogenia , Plantas/genética
6.
Oncogene ; 38(17): 3103-3118, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30622338

RESUMO

The cancer stem cell (CSC) model suggests that a subpopulation of cells within the tumor, the CSCs, is responsible for cancer relapse and metastasis formation. CSCs hold unique characteristics, such as self-renewal, differentiation abilities, and resistance to chemotherapy, raising the need for discovering drugs that target CSCs. Previously we have found that the antihypertensive drug spironolactone impairs DNA damage response in cancer cells. Here we show that spironolactone, apart from inhibiting cancerous cell growth, is also highly toxic to CSCs. Notably, we demonstrate that CSCs have high basal levels of DNA double-strand breaks (DSBs). Mechanistically, we reveal that spironolactone does not damage the DNA but impairs DSB repair and induces apoptosis in cancer cells and CSCs while sparing healthy cells. In vivo, spironolactone treatment reduced the size and CSC content of tumors. Overall, we suggest spironolactone as an anticancer reagent, toxic to both cancer cells and, particularly to, CSCs.


Assuntos
Antineoplásicos/administração & dosagem , Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Espironolactona/administração & dosagem , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Células HeLa , Humanos , Camundongos , Neoplasias/genética , Espironolactona/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Div ; 14: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31889988

RESUMO

BACKGROUND: Cell cycle regulation is a complex system consisting of growth-promoting and growth-restricting mechanisms, whose coordinated activity is vital for proper division and propagation. Alterations in this regulation may lead to uncontrolled proliferation and genomic instability, triggering carcinogenesis. Here, we conducted a comprehensive bioinformatic analysis of cell cycle-related genes using data from CRISPR/Cas9 loss-of-function screens performed in four cancer cell lines and in human embryonic stem cells (hESCs). RESULTS: Cell cycle genes, and in particular S phase and checkpoint genes, are highly essential for the growth of cancer and pluripotent cells. However, checkpoint genes are also found to underlie the differences between the cell cycle features of these cell types. Interestingly, while growth-promoting cell cycle genes overlap considerably between cancer and stem cells, growth-restricting cell cycle genes are completely distinct. Moreover, growth-restricting genes are consistently less frequent in cancer cells than in hESCs. Here we show that most of these genes are regulated by the tumor suppressor gene TP53, which is mutated in most cancer cells. Therefore, the growth-restriction system in cancer cells lacks important factors and does not function properly. Intriguingly, M phase genes are specifically essential for the growth of hESCs and are highly abundant among hESC-enriched genes. CONCLUSIONS: Our results highlight the differences in cell cycle regulation between cell types and emphasize the importance of conducting cell cycle studies in cells with intact genomes, in order to obtain an authentic representation of the genetic features of the cell cycle.

8.
N Engl J Med ; 379(11): 1042-1049, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30207912

RESUMO

The causes of ovarian dysgenesis remain incompletely understood. Two sisters with XX ovarian dysgenesis carried compound heterozygous truncating mutations in the BRCA2 gene that led to reduced BRCA2 protein levels and an impaired response to DNA damage, which resulted in chromosomal breakage and the failure of RAD51 to be recruited to double-stranded DNA breaks. The sisters also had microcephaly, and one sister was in long-term remission from leukemia, which had been diagnosed when she was 5 years old. Drosophila mutants that were null for an orthologue of BRCA2 were sterile, and gonadal dysgenesis was present in both sexes. These results revealed a new role for BRCA2 and highlight the importance to ovarian development of genes that are critical for recombination during meiosis. (Funded by the Israel Science Foundation and others.).


Assuntos
Proteína BRCA2/deficiência , Quebra Cromossômica , Reparo do DNA , Genes BRCA2 , Disgenesia Gonadal/genética , Ovário/crescimento & desenvolvimento , Adolescente , Animais , Proteína BRCA2/fisiologia , Quebra Cromossômica/efeitos dos fármacos , Análise Mutacional de DNA , Drosophila melanogaster , Feminino , Humanos , Hipogonadismo/genética , Masculino , Microcefalia/genética , Mitomicina/farmacologia , Modelos Animais , Ovário/fisiologia , Linhagem , Irmãos , Adulto Jovem
9.
PLoS One ; 12(1): e0169054, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052107

RESUMO

Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a definitive cytopathological hallmark of neurodegenerative diseases. We show that accumulation of ubiquitin on polyQ IB, associated with Huntington's disease, is correlated with extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone ubiquitination plays major roles in chromatin regulation and DNA repair. Accordingly, we observe that cells expressing IB fail to respond to radiomimetic DNA damage, to induce gamma-H2AX phosphorylation and to recruit 53BP1 to damaged foci. Interestingly ubiquitin depletion, histone de-ubiquitination and impaired DNA damage response are not restricted to PolyQ aggregates and are associated with artificial aggregating luciferase mutants. The longevity of brain neurons depends on their capacity to respond to and repair extensive ongoing DNA damage. Impaired DNA damage response, even modest one, could thus lead to premature neuron aging and mortality.


Assuntos
Dano ao DNA/genética , Histonas/metabolismo , Ubiquitina/metabolismo , Linhagem Celular Tumoral , Reparo do DNA/genética , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Peptídeos/metabolismo , Agregados Proteicos/genética , Ubiquitinação
10.
Cell Rep ; 16(9): 2499-511, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27545893

RESUMO

Nijmegen breakage syndrome (NBS) results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs). NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here, we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs). Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress, and abnormal cell-cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs) show downregulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed light on the molecular mechanisms underlying this severe syndrome, and further expand our knowledge of the genomic stress cells experience during the reprogramming process.


Assuntos
Proteínas de Ciclo Celular/genética , Instabilidade Cromossômica , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Síndrome de Quebra de Nijmegen/genética , Proteínas Nucleares/genética , Hidrolases Anidrido Ácido , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Reprogramação Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Cariotipagem , Proteína Homóloga a MRE11 , Mitose , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/patologia , Síndrome de Quebra de Nijmegen/metabolismo , Síndrome de Quebra de Nijmegen/patologia , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Oncotarget ; 7(37): 59173-59188, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27385095

RESUMO

Exosomes are small (30-100nm) vesicles secreted from all cell types serving as inter-cell communicators and affecting biological processes in "recipient" cells upon their uptake. The current study demonstrates for the first time that hTERT mRNA, the transcript of the enzyme telomerase, is shuttled from cancer cells via exosomes into telomerase negative fibroblasts, where it is translated into a fully active enzyme and transforms these cells into telomerase positive, thus creating a novel type of cells; non malignant cells with telomerase activity. All tested telomerase positive cells, including cancer cells and non malignant cells with overexpressed telomerase secreted exosomal hTERT mRNA in accordance with the endogenous levels of their hTERT mRNA and telomerase activity. Similarly exosomes isolated from sera of patients with pancreatic and lung cancer contained hTERT mRNA as well. Telomerase activity induced phenotypic changes in the recipient fibroblasts including increased proliferation, extension of life span and postponement of senescence. In addition, telomerase activity protected the fibroblasts from DNA damage induced by phleomycin and from apoptosis, indicating that also telomerase "extracurricular" activities are manifested in the recipient cells. The shuttle of telomerase from cancer cells into fibroblasts and the induction of these changes may contribute to the alterations of cancer microenvironment and its role in cancer. The described process has an obvious therapeutic potential which will be explored in further studies.


Assuntos
Exossomos/metabolismo , Fibroblastos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pancreáticas/metabolismo , RNA Mensageiro/metabolismo , Telomerase/metabolismo , Autorrenovação Celular , Sobrevivência Celular , Senescência Celular , Exossomos/patologia , Fibroblastos/patologia , Humanos , Células Jurkat , Células K562 , Neoplasias Pulmonares/patologia , Neoplasias Pancreáticas/patologia , Telomerase/genética , Microambiente Tumoral
12.
PLoS One ; 10(7): e0134120, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230935

RESUMO

Expression of RAD51, a crucial player in homologous recombination (HR) and DNA double-strand break (DSB) repair, is dysregulated in human tumors, and can contribute to genomic instability and tumor progression. To further understand RAD51 regulation we functionally characterized a long non-coding (lnc) RNA, dubbed TODRA (Transcribed in the Opposite Direction of RAD51), transcribed 69bp upstream to RAD51, in the opposite direction. We demonstrate that TODRA is an expressed transcript and that the RAD51 promoter region is bidirectional, supporting TODRA expression (7-fold higher than RAD51 in this assay, p = 0.003). TODRA overexpression in HeLa cells induced expression of TPIP, a member of the TPTE family which includes PTEN. Similar to PTEN, we found that TPIP co-activates E2F1 induction of RAD51. Analysis of E2F1's effect on the bidirectional promoter showed that E2F1 binding to the same site that promotes RAD51 expression, results in downregulation of TODRA. Moreover, TODRA overexpression induces HR in a RAD51-dependent DSB repair assay, and increases formation of DNA damage-induced RAD51-positive foci. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, p<0.001); positive correlation with ki67 status (r = 0.36, p = 0.005) and HER2 amplification (r = 0.41, p = 0.001)), correlates as expected with lower TODRA and higher E2F1 expression. However, although E2F1 induction resulted in TPIP downregulation in cell lines, we find that TPIP expression in tumors is not reduced despite higher E2F1 expression, perhaps contributing to increased RAD51 expression. Our results identify TPIP as a novel E2F1 co-activator, suggest a similar role for other TPTEs, and indicate that the TODRA lncRNA affects RAD51 dysregulation and RAD51-dependent DSB repair in malignancy. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, p<0.001); positive correlation with ki67 status (r = 0.36, p = 0.005) and HER2 amplification (r = 0.41, p = 0.001)), correlates as expected with lower TODRA and higher E2F1 expression. However, although E2F1 induction resulted in TPIP downregulation in cell lines, we find that TPIP expression in tumors is not reduced despite higher E2F1 expression, perhaps contributing to increased RAD51 expression. Our results identify TPIP as a novel E2F1 co-activator, suggest a similar role for other TPTEs, and indicate that the TODRA lncRNA affects RAD51 dysregulation and RAD51-dependent DSB repair in malignancy.


Assuntos
Reparo do DNA , RNA Longo não Codificante/genética , Rad51 Recombinase/genética , Dano ao DNA , Humanos , Rad51 Recombinase/fisiologia
14.
Oncotarget ; 5(19): 9396-409, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25238049

RESUMO

Genomic instability, a hallmark of cancer, is commonly caused by failures in the DNA damage response. Here we conducted a bioinformatical screen to reveal DNA damage response genes that are upregulated by estrogen and highly mutated in breast and ovarian cancers. This screen identified 53 estrogen-dependent cancer genes, some of which are novel. Notably, the screen retrieved 9 DNA helicases as well as 5 nucleases. DNA2, which functions as both a helicase and a nuclease and plays a role in DNA repair and replication, was retrieved in the screen. Mutations in DNA2, found in estrogen-dependent cancers, are clustered in the helicase and nuclease domains, suggesting activity impairment. Indeed, we show that mutations found in ovarian cancers impair DNA2 activity. Depletion of DNA2 in cells reduces their tumorogenicity in mice. In human, high expression of DNA2 correlates with poor survival of estrogen receptor-positive patients but not of estrogen receptor-negative patients. We also demonstrate that depletion of DNA2 in cells reduces proliferation, while addition of estrogen restores proliferation. These findings suggest that cells responding to estrogen will proliferate despite impaired in DNA2 activity, potentially promoting genomic instability and triggering cancer development.


Assuntos
Neoplasias da Mama/genética , DNA Helicases/genética , Reparo do DNA/genética , Estrogênios/farmacologia , Neoplasias Ovarianas/genética , Animais , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Dano ao DNA/genética , DNA Helicases/biossíntese , Feminino , Instabilidade Genômica/genética , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Transplante de Neoplasias , Neoplasias Ovarianas/mortalidade , Interferência de RNA , RNA Interferente Pequeno , Receptores de Estrogênio/metabolismo , Transplante Heterólogo
15.
Nucleic Acids Res ; 42(9): 5689-701, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682826

RESUMO

DNA double-strand breaks (DSBs) are the most severe type of DNA damage. DSBs are repaired by non-homologous end-joining or homology directed repair (HDR). Identifying novel small molecules that affect HDR is of great importance both for research use and therapy. Molecules that elevate HDR may improve gene targeting whereas inhibiting molecules can be used for chemotherapy, since some of the cancers are more sensitive to repair impairment. Here, we performed a high-throughput chemical screen for FDA approved drugs, which affect HDR in cancer cells. We found that HDR frequencies are increased by retinoic acid and Idoxuridine and reduced by the antihypertensive drug Spironolactone. We further revealed that Spironolactone impairs Rad51 foci formation, sensitizes cancer cells to DNA damaging agents, to Poly (ADP-ribose) polymerase (PARP) inhibitors and cross-linking agents and inhibits tumor growth in xenografts, in mice. This study suggests Spironolactone as a new candidate for chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Reparo de DNA por Recombinação/efeitos dos fármacos , Espironolactona/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Método Duplo-Cego , Aprovação de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Rad51 Recombinase/metabolismo , Estados Unidos , United States Food and Drug Administration , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Biol Chem ; 289(12): 8182-93, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24509855

RESUMO

To avoid genomic instability, cells have developed surveillance mechanisms such as the spindle assembly checkpoint (SAC) and the DNA damage response. ATM and MDC1 are central players of the cellular response to DNA double-strand breaks. Here, we identify a new role for these proteins in the regulation of mitotic progression and in SAC activation. MDC1 localizes at mitotic kinetochores following SAC activation in an ATM-dependent manner. ATM phosphorylates histone H2AX at mitotic kinetochores, and this phosphorylation is required for MDC1 localization at kinetochores. ATM and MDC1 are needed for kinetochore localization of the inhibitory mitotic checkpoint complex components, Mad2 and Cdc20, and for the maintenance of the mitotic checkpoint complex integrity. This probably relies on the interaction of MDC1 with the MCC. In this work, we have established that ATM and MDC1 maintain genomic stability not only by controlling the DNA damage response, but also by regulating SAC activation, providing an important link between these two essential biological processes.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia/análise , Proteínas de Ciclo Celular , Linhagem Celular , Histonas/análise , Histonas/metabolismo , Humanos , Cinetocoros/ultraestrutura , Mitose , Proteínas Nucleares/análise , Fosforilação , Transativadores/análise
17.
PLoS One ; 8(10): e78472, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24194938

RESUMO

Occurrence of DNA damage in a cell activates the DNA damage response, a survival mechanism that ensures genomics stability. Two key members of the DNA damage response are the tumor suppressor p53, which is the most frequently mutated gene in cancers, and MDC1, which is a central adaptor that recruits many proteins to sites of DNA damage. Here we characterize the in vitro interaction between p53 and MDC1 and demonstrate that p53 and MDC1 directly interact. The p53-MDC1 interaction is mediated by the tandem BRCT domain of MDC1 and the C-terminal domain of p53. We further show that both acetylation of lysine 382 and phosphorylation of serine 392 in p53 enhance the interaction between p53 and MDC1. Additionally, we demonstrate that the p53-MDC1 interaction is augmented upon the induction of DNA damage in human cells. Our data suggests a new role for acetylation of lysine 382 and phosphorylation of serine 392 in p53 in the cellular stress response and offers the first evidence for an interaction involving MDC1 that is modulated by acetylation.


Assuntos
Dano ao DNA/genética , Modelos Moleculares , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Humanos , Técnicas In Vitro , Lisina/metabolismo , Fosforilação , Conformação Proteica , Serina/metabolismo , Proteína Supressora de Tumor p53/química
18.
J Nephrol ; 26(2): 323-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22684651

RESUMO

BACKGROUND: Uremia has long been associated with cognitive deficits. This study explored the importance of the time of measurement of neurocognitive functioning, by directly comparing changes in neurocognitive functioning from immediately after hemodialysis treatment to immediately before treatment. METHODS: Twenty-five hemodynamically stable hemodialysis patients and 6 peritoneal dialysis controls completed 2 computer-based assessment batteries (ANAM), one immediately before dialysis and the second upon completion of that dialysis session. Paired sample t-tests were used to compare postdialysis with predialysis neurocognitive functioning scores for both a composite measure of global functioning and the neurocognitive subtests. RESULTS: There was significant improvement in global neuropsychological functioning from predialysis to postdialysis (t (24) = -7.5, p<0.001), showing an average of 18% improvement in the hemodialysis group, with no significant change in the peritoneal dialysis group. CONCLUSION: This study suggests that computer-based testing can offer information on the cognitive fluctuations of medically complex populations and suggests that the end of the session may be a better time to discuss important and complex health messages with hemodialysis patients. It further implies that some of the neurocognitive impairment that is associated with end-stage renal disease is a consequence of uremia and is improved by hemodialysis.


Assuntos
Transtornos Cognitivos/etiologia , Cognição , Falência Renal Crônica/terapia , Diálise Renal , Uremia/terapia , Adulto , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/psicologia , Feminino , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/psicologia , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Projetos Piloto , Fatores de Tempo , Resultado do Tratamento , Uremia/etiologia , Uremia/psicologia
19.
J Biol Chem ; 287(43): 36488-98, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22942284

RESUMO

The first step in V(D)J recombination is the formation of specific DNA double-strand breaks (DSBs) by the RAG1 and RAG2 proteins, which form the RAG recombinase. DSBs activate a complex network of proteins termed the DNA damage response (DDR). A key early event in the DDR is the phosphorylation of histone H2AX around DSBs, which forms a binding site for the tandem BRCA1 C-terminal (tBRCT) domain of MDC1. This event is required for subsequent signal amplification and recruitment of additional DDR proteins to the break site. RAG1 bears a histone H2AX-like motif at its C terminus (R1Ct), making it a putative MDC1-binding protein. In this work we show that the tBRCT domain of MDC1 binds the R1Ct motif of RAG1. Surprisingly, we also observed a second binding interface between the two proteins that involves the Proline-Serine-Threonine rich (PST) repeats of MDC1 and the N-terminal non-core region of RAG1 (R1Nt). The repeats-R1Nt interaction is constitutive, whereas the tBRCT-R1Ct interaction likely requires phosphorylation of the R1Ct motif of RAG1. As the C terminus of RAG1 has been implicated in inhibition of RAG activity, we propose a model in which phosphorylation of the R1Ct motif of RAG1 functions as a self-initiated regulatory signal.


Assuntos
Proteínas de Homeodomínio/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , VDJ Recombinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Proteínas Nucleares/genética , Mapeamento de Peptídeos/métodos , Fosforilação , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Transativadores/genética , VDJ Recombinases/genética
20.
Blood ; 120(2): 366-75, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645179

RESUMO

APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.


Assuntos
Citidina Desaminase/metabolismo , Reparo do DNA/fisiologia , Linfoma/metabolismo , Linfoma/radioterapia , Tolerância a Radiação/fisiologia , Desaminase APOBEC-3G , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular , Citidina Desaminase/antagonistas & inibidores , Citidina Desaminase/química , Citidina Desaminase/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA de Neoplasias/metabolismo , DNA de Neoplasias/efeitos da radiação , Técnicas de Silenciamento de Genes , Humanos , Linfoma/patologia , Microscopia de Força Atômica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...