Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 59(1): 167-178, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36371650

RESUMO

The generalized use of molecular identification tools indicated that multispecific green tides are more common than previously thought. Temporal successions between bloom-forming species on a seasonal basis were also revealed in different cold temperate estuaries, suggesting a key role of photoperiod and temperature controlling bloom development and composition. According to the Intergovernmental Panel on Climate Change, water temperatures are predicted to increase around 4°C by 2100 in Ireland, especially during late spring coinciding with early green tide development. Considering current and predicted temperatures, and photoperiods during bloom development, different eco-physiological experiments were developed. These experiments indicated that the growth of Ulva lacinulata was controlled by temperature, while U. compressa was unresponsive to the photoperiod and temperatures assayed. Considering a scenario of global warming for Irish waters, an earlier development of bloom is expected in the case of U. lacinulata. This could have significant consequences for biomass balance in Irish estuaries and the maximum accumulated biomass during peak bloom. The observed seasonal patterns and experiments also indicated that U. compressa may facilitate U. lacinulata development. When both species were co-cultivated, the culture performance showed intermediate responses to experimental treatments in comparison with monospecific cultures of both species.


Assuntos
Clorófitas , Ulva , Temperatura , Eutrofização , Água do Mar , China
2.
Mar Pollut Bull ; 175: 113318, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35065355

RESUMO

The control of macroalgal bloom development is central for protecting estuarine ecosystems. The identification of the nutrients limiting the development of macroalgal blooms, and their most likely sources is crucial for management strategies. Three Irish estuaries (Argideen, Clonakilty and Tolka) affected by green tides were monitored from June 2016 to August 2017. During each sampling occasion, biomass abundances, tissue N and P contents, and δ15N were determined for tubular and laminar morphologies of Ulva. All estuaries showed maximum biomass during summer and minimum during winter. Tissue nutrient contents revealed P rather than N limitation. The δ15N during the peak bloom indicated agriculture as the most likely source of nitrogen in the Argideen and Clonakilty, and urban wastewaters in the Tolka. No differences in the δ15N, and the tissue nutrients content were observed between morphologies. The period between May and July is most suitable for bioassessment of green tides.


Assuntos
Eutrofização , Ulva , Monitoramento Biológico , Biomassa , Ecossistema , Irlanda , Nitrogênio , Nutrientes
3.
Environ Res ; 155: 294-306, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28260616

RESUMO

In recent decades, magnetic susceptibility monitoring has developed as a useful technique in environmental pollution studies, particularly metal contamination of soil. This study provides the first ever examination of the effects of grass cover on magnetic susceptibility (MS) measurements of underlying urban soils. Magnetic measurements were taken in situ to determine the effects on κ (volume magnetic susceptibility) when the grass layer was present (κgrass) and after the grass layer was trimmed down to the root (κno grass). Height of grass was recorded in situ at each grid point. Soil samples (n=185) were collected and measurements of mass specific magnetic susceptibility (χ) were performed in the laboratory and frequency dependence (χfd%) calculated. Metal concentrations (Pb, Cu, Zn and Fe) in the soil samples were determined and a gradiometry survey carried out in situ on a section of the study area. Significant correlations were found between each of the MS measurements and the metal content of the soil at the p<0.01 level. Spatial distribution maps were created using Inverse Distance Weighting (IDW) and Local Indicators of Spatial Association (LISA) to identify common patterns. κgrass (ranged from 1.67 to 301.00×10-5 SI) and κno grass (ranged from 2.08 to 530.67×10-5 SI) measured in situ are highly correlated [r=0.966, n=194, p<0.01]. The volume susceptibility datasets in the presence and absence of grass coverage share a similar spatial distribution pattern. This study re-evaluates in situ κ monitoring techniques and the results suggest that the removal of grass coverage prior to obtaining in situ κ measurements of urban soil is unnecessary. This layer does not impede the MS sensor from accurately measuring elevated κ in soils, and therefore κ measurements recorded with grass coverage present can be reliably used to identify areas of urban soil metal contamination.


Assuntos
Fenômenos Magnéticos , Metais Pesados/análise , Poaceae , Poluentes do Solo/análise , Cidades , Monitoramento Ambiental , Irlanda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA