Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36690320

RESUMO

Alkylglycerol monooxygenase (AGMO) and plasmanylethanolamine desaturase (PEDS1) are enzymes involved in ether lipid metabolism. While AGMO degrades plasmanyl lipids by oxidative cleavage of the ether bond, PEDS1 exclusively synthesizes a specific subclass of ether lipids, the plasmalogens, by introducing a vinyl ether double bond into plasmanylethanolamine phospholipids. Ether lipids are characterized by an ether linkage at the sn-1 position of the glycerol backbone and they are found in membranes of different cell types. Decreased plasmalogen levels have been associated with neurological diseases like Alzheimer's disease. Agmo-deficient mice do not present an obvious phenotype under unchallenged conditions. In contrast, Peds1 knockout mice display a growth phenotype. To investigate the molecular consequences of Agmo and Peds1 deficiency on the mouse lipidome, five tissues from each mouse model were isolated and subjected to high resolution mass spectrometry allowing the characterization of up to 2013 lipid species from 42 lipid subclasses. Agmo knockout mice moderately accumulated plasmanyl and plasmenyl lipid species. Peds1-deficient mice manifested striking changes characterized by a strong reduction of plasmenyl lipids and a concomitant massive accumulation of plasmanyl lipids resulting in increased total ether lipid levels in the analyzed tissues except for the class of phosphatidylethanolamines where total levels remained remarkably constant also in Peds1 knockout mice. The rate-limiting enzyme in ether lipid metabolism, FAR1, was not upregulated in Peds1-deficient mice, indicating that the selective loss of plasmalogens is not sufficient to activate the feedback mechanism observed in total ether lipid deficiency.


Assuntos
Metabolismo dos Lipídeos , Plasmalogênios , Animais , Camundongos , Plasmalogênios/metabolismo , Lipidômica , Éteres , Camundongos Knockout
2.
J Lipid Res ; 63(6): 100222, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35537527

RESUMO

Little is known about the physiological role of alkylglycerol monooxygenase (AGMO), the only enzyme capable of cleaving the 1-O-alkyl ether bond of ether lipids. Expression and enzymatic activity of this enzyme can be detected in a variety of tissues including adipose tissue. This labile lipolytic membrane-bound protein uses tetrahydrobiopterin as a cofactor, and mice with reduced tetrahydrobiopterin levels have alterations in body fat distribution and blood lipid concentrations. In addition, manipulation of AGMO in macrophages led to significant changes in the cellular lipidome, and alkylglycerolipids, the preferred substrates of AGMO, were shown to accumulate in mature adipocytes. Here, we investigated the roles of AGMO in lipid metabolism by studying 3T3-L1 adipogenesis. AGMO activity was induced over 11 days using an adipocyte differentiation protocol. We show that RNA interference-mediated knockdown of AGMO did not interfere with adipocyte differentiation or affect lipid droplet formation. Furthermore, lipidomics revealed that plasmalogen phospholipids were preferentially accumulated upon Agmo knockdown, and a significant shift toward longer and more polyunsaturated acyl side chains of diacylglycerols and triacylglycerols could be detected by mass spectrometry. Our results indicate that alkylglycerol catabolism has an influence not only on ether-linked species but also on the degree of unsaturation in the massive amounts of triacylglycerols formed during in vitro 3T3-L1 adipocyte differentiation.


Assuntos
Éter , Lipidômica , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia , Animais , Diferenciação Celular , Éter/metabolismo , Éteres , Metabolismo dos Lipídeos/genética , Camundongos , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo
3.
Cell Mol Life Sci ; 79(4): 214, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347434

RESUMO

Plasmalogens are an abundant class of glycerophospholipids in the mammalian body, with special occurrence in the brain and in immune cell membranes. Plasmanylethanolamine desaturase (PEDS1) is the final enzyme of plasmalogen biosynthesis, which introduces the characteristic 1-O-alk-1'-enyl double bond. The recent sequence identification of PEDS1 as transmembrane protein 189 showed that its protein sequence is related to a special class of plant desaturases (FAD4), with whom it shares a motif of 8 conserved histidines, which are essential for the enzymatic activity. In the present work, we wanted to gain more insight into the sequence-function relationship of this enzyme and mutated to alanine additional 28 amino acid residues of murine plasmanylethanolamine desaturase including those 20 residues, which are also totally conserved-in addition to the eight-histidine-motif-among the animal PEDS1 and plant FAD4 plant desaturases. We measured the enzymatic activity by transient transfection of tagged murine PEDS1 expression clones to a PEDS1-deficient human HAP1 cell line by monitoring of labeled plasmalogens formed from supplemented 1-O-pyrenedecyl-sn-glycerol in relation to recombinant protein expression. Surprisingly, only a single mutation, namely aspartate 100, led to a total loss of PEDS1 activity. The second strongest impact on enzymatic activity had mutation of phenylalanine 118, leaving only 6% residual activity. A structural model obtained by homology modelling to available structures of stearoyl-CoA reductase predicted that this aspartate 100 residue interacts with histidine 96, and phenylalanine 118 interacts with histidine 187, both being essential histidines assumed to be involved in the coordination of the di-metal center of the enzyme.


Assuntos
Ácido Aspártico , Oxirredutases , Sequência de Aminoácidos , Animais , Humanos , Mamíferos/metabolismo , Camundongos , Oxirredutases/metabolismo , Plantas/metabolismo
4.
Cell Biosci ; 11(1): 54, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726865

RESUMO

BACKGROUND: Genome editing in mice using either classical approaches like homologous recombination or CRISPR/Cas9 has been reported to harbor off target effects (insertion/deletion, frame shifts or gene segment duplications) that lead to mutations not only in close proximity to the target site but also outside. Only the genomes of few engineered mouse strains have been sequenced. Since the role of the ether-lipid cleaving enzyme alkylglycerol monooxygenase (AGMO) in physiology and pathophysiology remains enigmatic, we created a knockout mouse model for AGMO using EUCOMM stem cells but unforeseen genotyping issues that did not agree with Mendelian distribution and enzyme activity data prompted an in-depth genomic validation of the mouse model. RESULTS: We report a gene segment tandem duplication event that occurred during the generation of an Agmo knockout-first allele by homologous recombination. Only low homology was seen between the breakpoints. While a single copy of the recombinant 18 kb cassette was integrated correctly around exon 2 of the Agmo gene, whole genome nanopore sequencing revealed a 94 kb duplication in the Agmo locus that contains Agmo wild-type exons 1-3. The duplication fooled genotyping by routine PCR, but could be resolved using qPCR-based genotyping, targeted locus amplification sequencing and nanopore sequencing. Despite this event, this Agmo knockout mouse model lacks AGMO enzyme activity and can therefore be used to study its physiological role. CONCLUSIONS: A duplication event occurred at the exact locus of the homologous recombination and was not detected by conventional quality control filters such as FISH or long-range PCR over the recombination sites. Nanopore sequencing provides a cost convenient method to detect such underrated off-target effects, suggesting its use for additional quality assessment of gene editing in mice and also other model organisms.

5.
Proc Natl Acad Sci U S A ; 117(14): 7792-7798, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209662

RESUMO

A significant fraction of the glycerophospholipids in the human body is composed of plasmalogens, particularly in the brain, cardiac, and immune cell membranes. A decline in these lipids has been observed in such diseases as Alzheimer's and chronic obstructive pulmonary disease. Plasmalogens contain a characteristic 1-O-alk-1'-enyl ether (vinyl ether) double bond that confers special biophysical, biochemical, and chemical properties to these lipids. However, the genetics of their biosynthesis is not fully understood, since no gene has been identified that encodes plasmanylethanolamine desaturase (E.C. 1.14.99.19), the enzyme introducing the crucial alk-1'-enyl ether double bond. The present work identifies this gene as transmembrane protein 189 (TMEM189). Inactivation of the TMEM189 gene in human HAP1 cells led to a total loss of plasmanylethanolamine desaturase activity, strongly decreased plasmalogen levels, and accumulation of plasmanylethanolamine substrates and resulted in an inability of these cells to form labeled plasmalogens from labeled alkylglycerols. Transient expression of TMEM189 protein, but not of other selected desaturases, recovered this deficit. TMEM189 proteins contain a conserved protein motif (pfam10520) with eight conserved histidines that is shared by an alternative type of plant desaturase but not by other mammalian proteins. Each of these histidines is essential for plasmanylethanolamine desaturase activity. Mice homozygous for an inactivated Tmem189 gene lacked plasmanylethanolamine desaturase activity and had dramatically lowered plasmalogen levels in their tissues. These results assign the TMEM189 gene to plasmanylethanolamine desaturase and suggest that the previously characterized phenotype of Tmem189-deficient mice may be caused by a lack of plasmalogens.


Assuntos
Lipídeos/genética , Oxirredutases/genética , Plasmalogênios/genética , Enzimas de Conjugação de Ubiquitina/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Linhagem Celular , Humanos , Camundongos , Oxirredução , Oxirredutases/metabolismo , Fenótipo , Plasmalogênios/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Compostos de Vinila/metabolismo
6.
Cells ; 9(1)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861249

RESUMO

The transcription factor FOXO3 is associated with poor outcome in high-stage neuroblastoma (NB), as it facilitates chemoprotection and tumor angiogenesis. In other tumor entities, FOXO3 stimulates metastasis formation, one of the biggest challenges in the treatment of aggressive NB. However, the impact of FOXO3 on the metastatic potential of neuronal tumor cells remains largely unknown. In the present study, we uncover the small leucine-rich proteoglycan family member lumican (LUM) as a FOXO3-regulated gene that stimulates cellular migration in NB. By a drug-library screen we identified the small molecular weight compound repaglinide (RPG) as a putative FOXO3 inhibitor. Here, we verify that RPG binds to the FOXO3-DNA-binding-domain (DBD) and thereby silences the transcriptional activity of FOXO3. Consistent with the concept that the FOXO3/LUM axis enhances the migratory capacity of aggressive NB cells, we demonstrate that stable knockdown of LUM abrogates the FOXO3-mediated increase in cellular migration. Importantly, FOXO3 inhibition by RPG represses the binding of FOXO3 to the LUM promoter, inhibits FOXO3-mediated LUM RNA and protein expression, and efficiently abrogates FOXO3-triggered cellular "wound healing" as well as spheroid-based 3D-migration. Thus, silencing the FOXO3/LUM axis by the FDA-approved compound RPG represents a promising strategy for novel therapeutic interventions in NB and other FOXO3-dependent tumors.


Assuntos
Carbamatos/farmacologia , Regulação para Baixo , Proteína Forkhead Box O3/metabolismo , Lumicana/genética , Neuroblastoma/genética , Piperidinas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proteína Forkhead Box O3/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Lumicana/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos
7.
Fungal Genet Biol ; 129: 86-100, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145992

RESUMO

In filamentous fungi, arginine methylation has been implicated in morphogenesis, mycotoxin biosynthesis, pathogenicity, and stress response although the exact role of this posttranslational modification in these processes remains obscure. Here, we present the first genome-wide transcriptome analysis in filamentous fungi that compared expression levels of genes regulated by type I and type II protein arginine methyltransferases (PRMTs). In Aspergillus nidulans, three conserved type I and II PRMTs are present that catalyze asymmetric or symmetric dimethylation of arginines. We generated a double type I mutant (ΔrmtA/rmtB) and a combined type I and type II mutant (ΔrmtB/rmtC) to perform genome-wide comparison of their effects on gene expression, but also to monitor putative overlapping activities and reciprocal regulations of type I and type II PRMTs in Aspergillus. Our study demonstrates, that rmtA and rmtC as type I and type II representatives act together as repressors of proteins that are secreted into the extracellular region as the majority of up-regulated genes are mainly involved in catabolic pathways that constitute the secretome of Aspergillus. In addition to a strong up-regulation of secretory genes we found a significant enrichment of down-regulated genes involved in processes related to oxidation-reduction, transmembrane transport and secondary metabolite biosynthesis. Strikingly, nearly 50% of down-regulated genes in both double mutants correspond to redox reaction/oxidoreductase processes, a remarkable finding in light of our recently observed oxidative stress phenotypes of ΔrmtA and ΔrmtC. Finally, analysis of nuclear and cytoplasmic extracts for mono-methylated proteins revealed the presence of both, common and specific substrates of RmtA and RmtC. Thus, our data indicate that type I and II PRMTs in Aspergillus seem to co-regulate the same biological processes but also specifically affect other pathways in a non-redundant fashion.


Assuntos
Aspergillus nidulans/enzimologia , Aspergillus nidulans/genética , Genoma Fúngico , Proteína-Arginina N-Metiltransferases/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Oxirredução , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Metabolismo Secundário , Fatores de Transcrição/genética
8.
Diagnostics (Basel) ; 8(3)2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976874

RESUMO

Two-dimensional difference gel electrophoresis (2D-DIGE) has been used for identification of possible biomarkers in the cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients. However, in different studies inconsistent results have been obtained. We wanted to analyze the diagnostic value of 2D-DIGE in early MS patients by comparing protein patterns between single and pooled samples of MS patients and controls. CSF samples of 20 MS patients and 10 control subjects were processed with 2D-DIGE. The so obtained protein patterns were analyzed with DeCyder 6.5 software, whereby we described variation of patterns presented in one gel as well as between different gels. Even when running single samples of patients of the same group in one gel, variation of protein patterns was high. The number of identified spots with different protein level varied between 4 and 30, depending on which sample batches were compared. We did not find a consistent pattern throughout all possible batch combinations. The inter-individual variation of protein expression as well as the susceptibility of 2D-DIGE for methodological variations makes use of 2D-DIGE as a diagnostic tool for MS and for detection of possible candidate biomarkers difficult, since detected proteins vary depending on which samples are compared.

10.
J Lipid Res ; 59(5): 901-909, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29540573

RESUMO

Plasmanylethanolamine desaturase (PEDS) (EC 1.14.99.19) introduces the 1-prime double bond into plasmalogens, one of the most abundant phospholipids in the human body. This labile membrane enzyme has not been purified and its coding sequence is unknown. Previous assays for this enzyme used radiolabeled substrates followed by multistep processing. We describe here a straight-forward method for the quantification of PEDS in enzyme incubation mixtures using pyrene-labeled substrates and reversed-phase HPLC with fluorescence detection. After stopping the reaction with hydrochloric acid in acetonitrile, the mixture was directly injected into the HPLC system without the need of lipid extraction. The substrate, 1-O-pyrenedecyl-2-acyl-sn-glycero-3-phosphoethanolamine, and the lyso-substrate, 1-O-pyrenedecyl-sn-glycero-3-phosphoethanolamine, were prepared from RAW-12 cells deficient in PEDS activity and were compared for their performance in the assay. Plasmalogen levels in mouse tissues and in cultured cells did not correlate with PEDS levels, indicating that the desaturase might not be the rate limiting step for plasmalogen biosynthesis. Among selected mouse organs, the highest activities were found in kidney and in spleen. Incubation of intact cultivated mammalian cells with 1-O-pyrenedecyl-sn-glycerol, extraction of lipids, and treatment with hydrochloric or acetic acid in acetonitrile allowed sensitive monitoring of PEDS activity in intact cells.


Assuntos
Cromatografia Líquida de Alta Pressão , Oxirredutases/análise , Plasmalogênios/química , Pirenos/química , Espectrometria de Fluorescência , Compostos de Vinila/química , Animais , Células Cultivadas , Camundongos , Estrutura Molecular , Oxirredutases/deficiência , Oxirredutases/metabolismo , Plasmalogênios/biossíntese , Pirenos/metabolismo , Especificidade por Substrato , Compostos de Vinila/metabolismo
11.
Sci Rep ; 6: 37917, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27883078

RESUMO

Transplant vasculopathy (TV) represents a major obstacle to long-term graft survival and correlates with severity of ischemia reperfusion injury (IRI). Donor administration of the nitric oxide synthases (NOS) co-factor tetrahydrobiopterin has been shown to prevent IRI. Herein, we analysed whether tetrahydrobiopterin is also involved in TV development. Using a fully allogeneic mismatched (BALB/c to C57BL/6) murine aortic transplantation model grafts subjected to long cold ischemia time developed severe TV with intimal hyperplasia (α-smooth muscle actin positive cells in the neointima) and endothelial activation (increased P-selectin expression). Donor pretreatment with tetrahydrobiopterin significantly minimised these changes resulting in only marginal TV development. Severe TV observed in the non-treated group was associated with increased protein oxidation and increased occurrence of endothelial NOS monomers in the aortic grafts already during graft procurement. Tetrahydrobiopterin supplementation of the donor prevented all these early oxidative changes in the graft. Non-treated allogeneic grafts without cold ischemia time and syngeneic grafts did not develop any TV. We identified early protein oxidation and impaired endothelial NOS homodimer formation as plausible mechanistic explanation for the crucial role of IRI in triggering TV in transplanted aortic grafts. Therefore, targeting endothelial NOS in the donor represents a promising strategy to minimise TV.


Assuntos
Aorta/fisiologia , Aorta/transplante , Óxido Nítrico Sintase Tipo III/metabolismo , Traumatismo por Reperfusão , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta/patologia , Biopterinas/análogos & derivados , Biopterinas/farmacologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Dimerização , Modelos Animais de Doenças , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculo Liso/metabolismo , Neointima/patologia , Oxigênio/metabolismo , Selectina-P/metabolismo
12.
Genome Biol Evol ; 8(1): 109-25, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26615215

RESUMO

Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.


Assuntos
Evolução Molecular , Genoma de Protozoário , Physarum polycephalum/genética , Proteínas de Protozoários/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Loci Gênicos , Proteínas de Protozoários/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transcriptoma
13.
Proc Natl Acad Sci U S A ; 112(8): 2431-6, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675482

RESUMO

Tetrahydrobiopterin is a cofactor synthesized from GTP with well-known roles in enzymatic nitric oxide synthesis and aromatic amino acid hydroxylation. It is used to treat mild forms of phenylketonuria. Less is known about the role of tetrahydrobiopterin in lipid metabolism, although it is essential for irreversible ether lipid cleavage by alkylglycerol monooxygenase. Here we found intracellular alkylglycerol monooxygenase activity to be an important regulator of alkylglycerol metabolism in intact murine RAW264.7 macrophage-like cells. Alkylglycerol monooxygenase was expressed and active also in primary mouse bone marrow-derived monocytes and "alternatively activated" M2 macrophages obtained by interleukin 4 treatment, but almost missing in M1 macrophages obtained by IFN-γ and lipopolysaccharide treatment. The cellular lipidome of RAW264.7 was markedly changed in a parallel way by modulation of alkylglycerol monooxygenase expression and of tetrahydrobiopterin biosynthesis affecting not only various ether lipid species upstream of alkylglycerol monooxygenase but also other more complex lipids including glycosylated ceramides and cardiolipins, which have no direct connection to ether lipid pathways. Alkylglycerol monooxygenase activity manipulation modulated the IFN-γ/lipopolysaccharide-induced expression of inducible nitric oxide synthase, interleukin-1ß, and interleukin 1 receptor antagonist but not transforming growth factor ß1, suggesting that alkylglycerol monooxygenase activity affects IFN-γ/lipopolysaccharide signaling. Our results demonstrate a central role of tetrahydrobiopterin and alkylglycerol monooxygenase in ether lipid metabolism of murine macrophages and reveal that alteration of alkylglycerol monooxygenase activity has a profound impact on the lipidome also beyond the class of ether lipids.


Assuntos
Biopterinas/análogos & derivados , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/metabolismo , Oxigenases de Função Mista/metabolismo , Animais , Biopterinas/farmacologia , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Análise por Conglomerados , GTP Cicloidrolase/metabolismo , Técnicas de Silenciamento de Genes , Interferon gama/farmacologia , Lentivirus/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo
14.
Nat Commun ; 5: 4439, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25047030

RESUMO

Mutations in the gene coding for membrane-bound fatty aldehyde dehydrogenase (FALDH) lead to toxic accumulation of lipid species and development of the Sjögren-Larsson Syndrome (SLS), a rare disorder characterized by skin defects and mental retardation. Here, we present the crystallographic structure of human FALDH, the first model of a membrane-associated aldehyde dehydrogenase. The dimeric FALDH displays a previously unrecognized element in its C-terminal region, a 'gatekeeper' helix, which extends over the adjacent subunit, controlling the access to the substrate cavity and helping orientate both substrate cavities towards the membrane surface for efficient substrate transit between membranes and catalytic site. Activity assays demonstrate that the gatekeeper helix is important for directing the substrate specificity of FALDH towards long-chain fatty aldehydes. The gatekeeper feature is conserved across membrane-associated aldehyde dehydrogenases. Finally, we provide insight into the previously elusive molecular basis of SLS-causing mutations.


Assuntos
Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Síndrome de Sjogren-Larsson/enzimologia , Aldeído Oxirredutases/genética , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , Síndrome de Sjogren-Larsson/genética , Especificidade por Substrato
15.
J Lipid Res ; 53(7): 1410-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22508945

RESUMO

The lack of fatty aldehyde dehydrogenase function in Sjögren Larsson Syndrome (SLS) patient cells not only impairs the conversion of fatty aldehydes into their corresponding fatty acid but also has an effect on connected pathways. Alteration of the lipid profile in these cells is thought to be responsible for severe symptoms such as ichtyosis, mental retardation, and spasticity. Here we present a novel approach to examine fatty aldehyde metabolism in a time-dependent manner by measuring pyrene-labeled fatty aldehyde, fatty alcohol, fatty acid, and alkylglycerol in the culture medium of living cells using HPLC separation and fluorescence detection. Our results show that in fibroblasts from SLS patients, fatty aldehyde is not accumulating but is converted readily into fatty alcohol. In control cells, in contrast, exclusively the corresponding fatty acid is formed. SLS patient cells did not display a hypersensitivity toward hexadecanal or hexadecanol, but 3-fold lower concentrations of the fatty alcohol than the corresponding fatty aldehyde were needed to induce toxicity in SLS patient and in control cells.


Assuntos
Aldeídos/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Pirenos/química , Síndrome de Sjogren-Larsson/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeídos/química , Aldeídos/farmacologia , Animais , Células CHO , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cricetinae , Relação Dose-Resposta a Droga , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Fibroblastos/química , Fibroblastos/efeitos dos fármacos , Humanos , Pirenos/metabolismo , Síndrome de Sjogren-Larsson/patologia , Relação Estrutura-Atividade , Fatores de Tempo
16.
Biochem J ; 443(1): 279-86, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22220568

RESUMO

Alkylglycerol mono-oxygenase (EC 1.14.16.5) forms a third, distinct, class among tetrahydrobiopterin-dependent enzymes in addition to aromatic amino acid hydroxylases and nitric oxide synthases. Its protein sequence contains the fatty acid hydroxylase motif, a signature indicative of a di-iron centre, which contains eight conserved histidine residues. Membrane enzymes containing this motif, including alkylglycerol mono-oxygenase, are especially labile and so far have not been purified to homogeneity in active form. To obtain a first insight into structure-function relationships of this enzyme, we performed site-directed mutagenesis of 26 selected amino acid residues and expressed wild-type and mutant proteins containing a C-terminal Myc tag together with fatty aldehyde dehydrogenase in Chinese-hamster ovary cells. Among all of the acidic residues within the eight-histidine motif, only mutation of Glu137 to alanine led to an 18-fold increase in the Michaelis-Menten constant for tetrahydrobiopterin, suggesting a role in tetrahydrobiopterin interaction. A ninth additional histidine residue essential for activity was also identified. Nine membrane domains were predicted by four programs: ESKW, TMHMM, MEMSAT and Phobius. Prediction of a part of the structure using the Rosetta membrane ab initio method led to a plausible suggestion for a structure of the catalytic site of alkylglycerol mono-oxygenase.


Assuntos
Biopterinas/análogos & derivados , Oxigenases de Função Mista/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Biopterinas/química , Células CHO , Domínio Catalítico , Simulação por Computador , Sequência Consenso , Cricetinae , Humanos , Ferro/química , Cinética , Oxigenases de Função Mista/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
17.
Electrophoresis ; 32(13): 1684-91, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21647922

RESUMO

Blue native electrophoresis (BNE) was applied to analyze the von Willebrand factor (vWF) multimers in their native state and to present a methodology to perform blue native electrophoresis on human plasma proteins, which has not been done before. The major difference between this method and the commonly used SDS-agarose gel electrophoresis is the lack of satellite bands in the high-resolution native gel. To further analyze this phenomenon, a second dimension was performed under denaturing conditions. Thereby, we obtained a pattern in which each protein sub-unit from the first dimension dissociates into three distinct sub-bands. These bands confirm the triplet structure, which consists of an intermediate band and two satellite bands. By introducing the second dimension, our novel method separates the triplet structure into a higher resolution than the commonly used SDS-agarose gel electrophoresis does. This helps considerably in the classification of ambiguous von Willebrand's disease subtypes. In addition, our method has the additional advantage of being able to resolve the triplet structure of platelet vWF multimers, which has not been identified previously through conventional SDS-agarose electrophoresis multimer analysis. This potential enables us to compare the triplet structure from platelet and plasmatic vWF, and may help to find out whether structural abnormalities concern the vWF molecule in the platelet itself, or whether they are due to the physiological processing of vWF shed into circulation. Owing to its resolution and sensitivity, this native separation technique offers a promising tool for the analysis and detection of von Willebrand disorder, and for the classification of von Willebrand's disease subtypes.


Assuntos
Plaquetas/química , Eletroforese em Gel de Ágar/métodos , Complexos Multiproteicos/química , Doenças de von Willebrand/classificação , Fator de von Willebrand/química , Eletroforese em Gel de Poliacrilamida , Humanos , Complexos Multiproteicos/análise , Desnaturação Proteica , Subunidades Proteicas , Fatores de Tempo , Doenças de von Willebrand/sangue , Fator de von Willebrand/análise
18.
J Clin Endocrinol Metab ; 96(1): E233-41, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20980430

RESUMO

CONTEXT: Previous studies have implicated a deficiency in the inflammatory response in women who develop endometriosis. The specific immunological deficits have not been completely elucidated. OBJECTIVE: Our objective was to identify differences in protein expression in serum that might shed light on the pathophysiology of endometriosis. DESIGN AND SETTING: This cross-sectional study of women undergoing laparoscopy between 2003 and 2005 took place at a university medical center. PATIENTS: Patients included consenting women age 18-49 yr undergoing surgery for pain and/or infertility or elective tubal ligation. Women with acute or chronic medical conditions were excluded. INTERVENTION: Blood was collected preoperatively. MAIN OUTCOME MEASURE: Proteomic analysis of serum was done using two-dimensional difference gel electrophoresis. RESULTS: We found 25 protein spots with a significant difference in abundance between women with endometriosis and controls, including acute-phase proteins and complement components. The abundance of vitamin D-binding protein was higher in all endometriosis pools by a factor of approximately 3 compared with the control pool (P < 0.02). Analysis of specific allele products using nano-scale liquid chromatography-electrospray ionization-mass spectrometry indicated that it was the GC*2 allele product that was in greater concentration in serum pools, as well as in single validation samples, in women with endometriosis (P = 0.006). In contrast to the GC*1 allele product, which is readily converted to a potent macrophage factor (Gc protein-derived macrophage-activating factor), the GC*2 allele product undergoes practically no such conversion. CONCLUSIONS: We speculate that the inability to sufficiently activate macrophages' phagocytotic function in those carrying the GC*2 polymorphism (more prevalent in endometriosis) may allow endometriotic tissues to implant in the peritoneal cavity. Future studies evaluating specific vitamin D-binding protein polymorphisms as a risk factor for endometriosis in larger populations of women are warranted.


Assuntos
Endometriose/sangue , Polimorfismo Genético , Proteína de Ligação a Vitamina D/sangue , Alelos , Cromatografia Líquida , Estudos Transversais , Eletroforese em Gel Bidimensional , Endometriose/etiologia , Feminino , Humanos , Espectrometria de Massas , Fatores de Risco , Proteína de Ligação a Vitamina D/análise
19.
Proc Natl Acad Sci U S A ; 107(31): 13672-7, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20643956

RESUMO

Alkylglycerol monooxygenase (glyceryl-ether monooxygenase, EC 1.14.16.5) is the only enzyme known to cleave the O-alkyl bond of ether lipids which are essential components of brain membranes, protect the eye from cataract, interfere or mediate signalling processes, and are required for spermatogenesis. Along with phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase, and nitric oxide synthase, alkylglycerol monooxygenase is one of five known enzymatic reactions which depend on tetrahydrobiopterin. Although first described in 1964, no sequence had been assigned to this enzyme so far since it lost activity upon protein purification attempts. A functional library screen using pools of plasmids of a rat liver expression library transfected to CHO cells was also unsuccessful. We therefore selected human candidate genes by bioinformatic approaches and by proteomic analysis of partially purified enzyme and tested alkylglycerol monooxygenase activity in CHO cells transfected with expression plasmids. Transmembrane protein 195, a predicted membrane protein with unassigned function which occurs in bilateral animals, was found to encode for tetrahydrobiopterin-dependent alkylglycerol monooxygenase. This sequence assignment was confirmed by injection of transmembrane protein 195 cRNA into Xenopus laevis oocytes. Transmembrane protein 195 shows no sequence homology to aromatic amino acid hydroxylases or nitric oxide synthases, but contains the fatty acid hydroxylase motif. This motif is found in enzymes which contain a diiron center and which carry out hydroxylations of lipids at aliphatic carbon atoms like alkylglycerol monooxygenase. This sequence assignment suggests that alkylglycerol monooxygenase forms a distinct third group among tetrahydrobiopterin-dependent enzymes.


Assuntos
Biopterinas/análogos & derivados , Oxigenases de Função Mista/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Biopterinas/metabolismo , Células CHO , Biologia Computacional , Cricetinae , Cricetulus , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxigenases de Função Mista/genética , Ratos , Xenopus laevis
20.
Am J Clin Pathol ; 133(2): 322-30, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20093243

RESUMO

Analysis of von Willebrand factor (vWF) multimers allows classification of the subtypes of von Willebrand disease (vWD) in human serum and platelet lysates. A novel method for multimer analysis of vWF by 2-chamber, vertical (sodium dodecyl sulfate), agarose gel electrophoresis, designed for comparing discontinuous high- and low-resolving gels for plasma and platelets, followed by Western blotting and high-sensitivity fluorescence detection (HSFD) of cyanine (Cy)5-labeled vWF multimers is presented. HSFD shows that this method has high discriminatory power for visualization and densitometric analysis of platelets and plasma vWF multimers in various types of vWD and allows rapid classification of vWD types, to separate types 2A and 2B. The described procedures of vWF multimer analysis with high-sensitivity Cy5 fluorescence detection and direct comparison of high- and low-resolving gels for screening and detection of the complete range of high- and low-molecular vWF multimers is efficient and useful for screening, detecting, and classifying vWD subtypes and makes this method diagnostically and clinically relevant.


Assuntos
Carbocianinas , Eletroforese em Gel de Ágar/métodos , Fluorescência , Fator de von Willebrand/análise , Densitometria , Humanos , Dodecilsulfato de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...