Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 904737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847970

RESUMO

The pursuit of better therapies for disorders creating deficiencies in skeletal muscle regeneration is in progress, and several biotoxins are used in skeletal muscle research. Since recombinant proteins derived from Lonomia obliqua bristles, recombinant Lonomia obliqua Stuart-factor activator (rLosac) and recombinant Lonomia obliqua prothrombin activator protease (rLopap) act as cytoprotective agents and promote cell survival, we hypothesize that both rLosac and rLopap favour the skeletal muscle regeneration process. In the present work, we investigate the ability of these recombinant proteins rLosac and rLopap to modulate the production of key mediators of the myogenic process. The expression of myogenic regulatory factors (MRFs), cell proliferation, the production of prostaglandin E2 (PGE2) and the protein expression of cyclooxygenases COX-1 and COX-2 were evaluated in C2C12 mouse myoblasts pre-treated with rLosac and rLopap. We found an increased proliferation of myoblasts, stimulated by both recombinant proteins. Moreover, these proteins modulated PGE2 release and MRFs activities. We also found an increased expression of the EP4 receptor in the proliferative phase of C2C12 cells, suggesting the involvement of this receptor in the effects of PGE2 in these cells. Moreover, the recombinant proteins inhibited the release of IL-6 and PGE2, which is induced by an inflammatory stimulus by IL-1ß. This work reveals rLopap and rLosac as promising proteins to modulate processes involving tissue regeneration as occurs during skeletal muscle injury.

2.
Front Immunol ; 13: 899569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799794

RESUMO

We identified Pycard and BC017158 genes as putative effectors of the Quantitative Trait locus (QTL) that we mapped at distal chromosome 7 named Irm1 for Inflammatory response modulator 1, controlling acute inflammatory response (AIR) and the production of IL-1ß, dependent on the activation of the NLRP3 inflammasome. We obtained the mapping through genome-wide linkage analysis of Single Nucleotide Polymorphisms (SNPs) in a cross between High (AIRmax) and Low (AIRmin) responder mouse lines that we produced by several generations of bidirectional selection for Acute Inflammatory Response. A highly significant linkage signal (LOD score peak of 72) for ex vivo IL-1ß production limited a 4 Mbp interval to chromosome 7. Sequencing of the locus region revealed 14 SNPs between "High" and "Low" responders that narrowed the locus to a 420 Kb interval. Variants were detected in non-coding regions of Itgam, Rgs10 and BC017158 genes and at the first exon of Pycard gene, resulting in an E19K substitution in the protein ASC (apoptosis associated speck-like protein containing a CARD) an adaptor molecule in the inflammasome complex. Silencing of BC017158 inhibited IL1-ß production by stimulated macrophages and the E19K ASC mutation carried by AIRmin mice impaired the ex vivo IL-1ß response and the formation of ASC specks in stimulated cells. IL-1ß and ASC specks play major roles in inflammatory reactions and in inflammation-related diseases. Our results delineate a novel genetic factor and a molecular mechanism affecting the acute inflammatory response.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Inflamassomos , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Ligação Genética , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos , Locos de Características Quantitativas
3.
Sci Rep ; 12(1): 3890, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273234

RESUMO

The new outbreak of coronavirus disease 2019 (COVID-19) has infected and caused the death of millions of people worldwide. Intensive efforts are underway around the world to establish effective treatments. Immunoglobulin from immunized animals or plasma from convalescent patients might constitute a specific treatment to guarantee the neutralization of the virus in the early stages of infection, especially in patients with risk factors and a high probability of progressing to severe disease. Worldwide, a few clinical trials using anti-SARS-CoV-2 immunoglobulins from horses immunized with the entire spike protein or fragments of it in the treatment of patients with COVID-19 are underway. Here, we describe the development of an anti-SARS-CoV-2 equine F(ab')2 immunoglobulin using a newly developed SARS-CoV-2 viral antigen that was purified and inactivated by radiation. Cell-based and preclinical assays showed that the F(ab')2 immunoglobulin successfully neutralizes the virus, is safe in animal models, and reduces the severity of the disease in a hamster model of SARS-CoV-2 infection and disease.


Assuntos
COVID-19/terapia , Imunoglobulinas/uso terapêutico , Receptores Imunológicos/uso terapêutico , SARS-CoV-2/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Cavalos/imunologia , Humanos , Imunoglobulinas/imunologia , Imunoglobulinas/isolamento & purificação , Masculino , Mesocricetus/imunologia , Plasmaferese/veterinária , Receptores Imunológicos/imunologia
4.
Front Mol Biosci, v. 9, 904737, jun. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4437

RESUMO

The pursuit of better therapies for disorders creating deficiencies in skeletal muscle regeneration is in progress, and several biotoxins are used in skeletal muscle research. Since recombinant proteins derived from Lonomia obliqua bristles, recombinant Lonomia obliqua Stuart-factor activator (rLosac) and recombinant Lonomia obliqua prothrombin activator protease (rLopap) act as cytoprotective agents and promote cell survival, we hypothesize that both rLosac and rLopap favour the skeletal muscle regeneration process. In the present work, we investigate the ability of these recombinant proteins rLosac and rLopap to modulate the production of key mediators of the myogenic process. The expression of myogenic regulatory factors (MRFs), cell proliferation, the production of prostaglandin E2 (PGE2) and the protein expression of cyclooxygenases COX-1 and COX-2 were evaluated in C2C12 mouse myoblasts pre-treated with rLosac and rLopap. We found an increased proliferation of myoblasts, stimulated by both recombinant proteins. Moreover, these proteins modulated PGE2 release and MRFs activities. We also found an increased expression of the EP4 receptor in the proliferative phase of C2C12 cells, suggesting the involvement of this receptor in the effects of PGE2 in these cells. Moreover, the recombinant proteins inhibited the release of IL-6 and PGE2, which is induced by an inflammatory stimulus by IL-1β. This work reveals rLopap and rLosac as promising proteins to modulate processes involving tissue regeneration as occurs during skeletal muscle injury.

5.
Front Immunol, v. 13, 899569, jun. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4428

RESUMO

We identified Pycard and BC017158 genes as putative effectors of the Quantitative Trait locus (QTL) that we mapped at distal chromosome 7 named Irm1 for Inflammatory response modulator 1, controlling acute inflammatory response (AIR) and the production of IL-1β, dependent on the activation of the NLRP3 inflammasome. We obtained the mapping through genome-wide linkage analysis of Single Nucleotide Polymorphisms (SNPs) in a cross between High (AIRmax) and Low (AIRmin) responder mouse lines that we produced by several generations of bidirectional selection for Acute Inflammatory Response. A highly significant linkage signal (LOD score peak of 72) for ex vivo IL-1β production limited a 4 Mbp interval to chromosome 7. Sequencing of the locus region revealed 14 SNPs between “High” and “Low” responders that narrowed the locus to a 420 Kb interval. Variants were detected in non-coding regions of Itgam, Rgs10 and BC017158 genes and at the first exon of Pycard gene, resulting in an E19K substitution in the protein ASC (apoptosis associated speck-like protein containing a CARD) an adaptor molecule in the inflammasome complex. Silencing of BC017158 inhibited IL1-β production by stimulated macrophages and the E19K ASC mutation carried by AIRmin mice impaired the ex vivo IL-1β response and the formation of ASC specks in stimulated cells. IL-1β and ASC specks play major roles in inflammatory reactions and in inflammation-related diseases. Our results delineate a novel genetic factor and a molecular mechanism affecting the acute inflammatory response.

6.
Sci Rep, v. 12, 3890, mar. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4257

RESUMO

The new outbreak of coronavirus disease 2019 (COVID-19) has infected and caused the death of millions of people worldwide. Intensive efforts are underway around the world to establish effective treatments. Immunoglobulin from immunized animals or plasma from convalescent patients might constitute a specific treatment to guarantee the neutralization of the virus in the early stages of infection, especially in patients with risk factors and a high probability of progressing to severe disease. Worldwide, a few clinical trials using anti-SARS-CoV-2 immunoglobulins from horses immunized with the entire spike protein or fragments of it in the treatment of patients with COVID-19 are underway. Here, we describe the development of an anti-SARS-CoV-2 equine F(ab′)2 immunoglobulin using a newly developed SARS-CoV-2 viral antigen that was purified and inactivated by radiation. Cell-based and preclinical assays showed that the F(ab′)2 immunoglobulin successfully neutralizes the virus, is safe in animal models, and reduces the severity of the disease in a hamster model of SARS-CoV-2 infection and disease.

7.
Toxins (Basel) ; 13(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34941750

RESUMO

Hemostatic disorders are caused either by platelet-related dysfunctions, defective blood coagulation, or by a combination of both, leading to an increased susceptibility to cardiovascular diseases (CVD) and other related illnesses. The unique specificity of anticoagulants from hematophagous arthropods, such as ticks, suggests that tick saliva holds great promise for discovering new treatments for these life-threatening diseases. In this study, we combined in silico and in vitro analyses to characterize the first recombinant serpin, herein called Dromaserpin, from the sialotranscriptome of the Hyalomma dromedarii tick. Our in silico data described Dromaserpin as a secreted protein of ~43 kDa with high similarities to previously characterized inhibitory serpins. The recombinant protein (rDromaserpin) was obtained as a well-structured monomer, which was tested using global blood coagulation and platelet aggregation assays. With this approach, we confirmed rDromaserpin anticoagulant activity as it significantly delayed plasma clotting in activated partial thromboplastin time and thrombin time assays. The profiling of proteolytic activity shows its capacity to inhibit thrombin in the micromolar range (0.2 to 1 µM) and in the presence of heparin this inhibition was clearly increased. It was also able to inhibit Kallikrein, FXIa and slightly FXIIa, with no significant effect on other factors. In addition, the rDromaserpin inhibited thrombin-induced platelet aggregation. Taken together, our data suggest that rDromaserpin deserves to be further investigated as a potential candidate for developing therapeutic compounds targeting disorders related to blood clotting and/or platelet aggregation.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Ixodidae/metabolismo , Serpinas/química , Serpinas/farmacologia , Sequência de Aminoácidos , Animais , Anticoagulantes/química , Anticoagulantes/metabolismo , Simulação por Computador , Modelos Moleculares , Filogenia , Conformação Proteica , Serpinas/metabolismo
8.
Toxins, v. 13, n. 12, 913, dez. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4077

RESUMO

Hemostatic disorders are caused either by platelet-related dysfunctions, defective blood coagulation, or by a combination of both, leading to an increased susceptibility to cardiovascular diseases (CVD) and other related illnesses. The unique specificity of anticoagulants from hematophagous arthropods, such as ticks, suggests that tick saliva holds great promise for discovering new treatments for these life-threatening diseases. In this study, we combined in silico and in vitro analyses to characterize the first recombinant serpin, herein called Dromaserpin, from the sialotranscriptome of the Hyalomma dromedarii tick. Our in silico data described Dromaserpin as a secreted protein of ~43 kDa with high similarities to previously characterized inhibitory serpins. The recombinant protein (rDromaserpin) was obtained as a well-structured monomer, which was tested using global blood coagulation and platelet aggregation assays. With this approach, we confirmed rDromaserpin anticoagulant activity as it significantly delayed plasma clotting in activated partial thromboplastin time and thrombin time assays. The profiling of proteolytic activity shows its capacity to inhibit thrombin in the micromolar range (0.2 to 1 μM) and in the presence of heparin this inhibition was clearly increased. It was also able to inhibit Kallikrein, FXIa and slightly FXIIa, with no significant effect on other factors. In addition, the rDromaserpin inhibited thrombin-induced platelet aggregation. Taken together, our data suggest that rDromaserpin deserves to be further investigated as a potential candidate for developing therapeutic compounds targeting disorders related to blood clotting and/or platelet aggregation.

9.
Sci Rep ; 10(1): 6388, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286411

RESUMO

We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Artrópodes/uso terapêutico , Doenças dos Cavalos/tratamento farmacológico , Melanoma/veterinária , Proteínas e Peptídeos Salivares/uso terapêutico , Animais , Morte Celular/efeitos dos fármacos , Descoberta de Drogas , Cavalos , Masculino , Melanoma/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos
10.
Cell Adh Migr ; 14(1): 129-138, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30238848

RESUMO

In a tumor microenvironment, endothelial cell migration and angiogenesis allow cancer to spread to other organs causing metastasis.  Indeed, a number of molecules that are involved in cytoskeleton re-organization and intracellular signaling have been investigated for their effects on tumor cell growth and metastasis. Alongside that, Amblyomin-X, a recombinant Kunitz-type protein, has been shown to reduce metastasis and tumor growth in in vivo experiments. In the present report, we provide a mechanistic insight to these antitumor effects, this is,  Amblyomin-X modulates Rho-GTPases and uPAR signaling, and reduces the release of MMPs, leading to disruption of the actin cytoskeleton and decreased cell migration of tumor cell lines. Altogether, our data support a role for Amblyomin-X as a novel potential antitumor drug. ABBREVIATIONS: Amb-X: Amblyomin-X; ECGF: endotelial cell growth factor; ECM: extracellular matrix; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HUVEC: human umbilical vein endothelial cell; LRP1: low-density lipoprotein receptor-related protein; MMP: matrix metalloproteinase; HPI-4: hedgehog pathway inhibitor 4; PAI-1: plasminogen activator inhibitor 1; PMA: phorbol 12-myristate-13-acetate; TFPI: tissue factor pathway inhibitor; uPA: urokinase plasminogen activator; uPAR: uPA receptor.


Assuntos
Aprotinina/farmacologia , Proteínas de Artrópodes/farmacologia , Movimento Celular/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas e Peptídeos Salivares/farmacologia , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
11.
Sci Rep, v. 10, 6388, abr. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3009

RESUMO

We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.

12.
Sci. Rep. ; 10: 6388, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17607

RESUMO

We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.

13.
Eur J Drug Metab Pharmacokinet, v. 44, p. 111-120, fev. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2686

RESUMO

Background Amblyomin-X is a recombinant protein under development for cancer treatment owing to its selective cytotoxic activity over several tumour cell lines and tumour regression in mice models. The aim of this study was to examine the distribution and pharmacokinetics of amblyomin-X in healthy female mice. Methods Amblyomin-X was injected intravenously into the healthy animals and at controlled times plasma and organs were removed and analysed for identification and quantification of the protein. Alternatively, the labelled protein was injected into mice and tracked in an in vivo imaging system. Results Amblyomin-X was rapidly eliminated from plasma, probably because of its inability to bind to plasma albumin. After 10 min, the protein was found in the thymus and lungs, and later in the heart, liver and kidneys. In the liver, the protein was found until 24 h after a single injection. The in vivo analysis showed the same kinetics profile, besides the identification of amblyomin-X in the bladder region, indicating its elimination via urine. Only fragments of amblyomin-X were observed in the urine. Conclusions These findings suggest that amblyomin-X is rapidly distributed to the tissues, metabolized by the liver or even kidneys, and eliminated in urine in healthy mice. There is no accumulation in any organ.

14.
Toxicol Rep, v. 6, p. 51-63, 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2630

RESUMO

Amblyomin-X, a Kunitz-type protease inhibitor, is a recombinant protein that selectively induces apoptosis in tumor cells and promotes tumor reduction in vivo in melanoma animal models. Furthermore, Amblyomin-X was able to drastically reduce lung metastasis in a mice orthotopic kidney tumor model. Due to its antitumor activity, Amblyomin-X potential to become a new drug is currently under investigation, therefore the aim of the present study was to perform preclinical assays to evaluate Amblyomin-X toxicity in healthy mice. Exploratory toxicity assays have shown that treatment with 512?mg/kg of Amblyomin-X lead to animal mortality, therefore two groups of treatment were evaluated in the present work: in the acute toxicity assay, animals were injected once with doses ranging from 4 to 256?mg/kg of Amblyomin-X, while in the subacute toxicity assay, animals were injected with 0.25, 0.57 and 1?mg/kg of Amblyomin-X daily, during 28 days. Following this treatment regimens, Amblyomin-X did not cause any mortality; moreover, toxicity signs were discrete, reversible and observed only at the higher doses, thus establishing a safety profile for administration in mice, which can be further used to determine the dose translation of this novel drug candidate for treatment in other species.

15.
Eur. J. Drug. Metab. Pharmacokinet. ; 44: p. 111–120, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15864

RESUMO

Background Amblyomin-X is a recombinant protein under development for cancer treatment owing to its selective cytotoxic activity over several tumour cell lines and tumour regression in mice models. The aim of this study was to examine the distribution and pharmacokinetics of amblyomin-X in healthy female mice. Methods Amblyomin-X was injected intravenously into the healthy animals and at controlled times plasma and organs were removed and analysed for identification and quantification of the protein. Alternatively, the labelled protein was injected into mice and tracked in an in vivo imaging system. Results Amblyomin-X was rapidly eliminated from plasma, probably because of its inability to bind to plasma albumin. After 10 min, the protein was found in the thymus and lungs, and later in the heart, liver and kidneys. In the liver, the protein was found until 24 h after a single injection. The in vivo analysis showed the same kinetics profile, besides the identification of amblyomin-X in the bladder region, indicating its elimination via urine. Only fragments of amblyomin-X were observed in the urine. Conclusions These findings suggest that amblyomin-X is rapidly distributed to the tissues, metabolized by the liver or even kidneys, and eliminated in urine in healthy mice. There is no accumulation in any organ.

16.
Toxicol. Rep. ; 6: p. 51-63, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15745

RESUMO

Amblyomin-X, a Kunitz-type protease inhibitor, is a recombinant protein that selectively induces apoptosis in tumor cells and promotes tumor reduction in vivo in melanoma animal models. Furthermore, Amblyomin-X was able to drastically reduce lung metastasis in a mice orthotopic kidney tumor model. Due to its antitumor activity, Amblyomin-X potential to become a new drug is currently under investigation, therefore the aim of the present study was to perform preclinical assays to evaluate Amblyomin-X toxicity in healthy mice. Exploratory toxicity assays have shown that treatment with 512?mg/kg of Amblyomin-X lead to animal mortality, therefore two groups of treatment were evaluated in the present work: in the acute toxicity assay, animals were injected once with doses ranging from 4 to 256?mg/kg of Amblyomin-X, while in the subacute toxicity assay, animals were injected with 0.25, 0.57 and 1?mg/kg of Amblyomin-X daily, during 28 days. Following this treatment regimens, Amblyomin-X did not cause any mortality; moreover, toxicity signs were discrete, reversible and observed only at the higher doses, thus establishing a safety profile for administration in mice, which can be further used to determine the dose translation of this novel drug candidate for treatment in other species.

17.
Cell Adh Migr, v. 14, n. 1, p. 129-138, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3151

RESUMO

In a tumor microenvironment, endothelial cell migration and angiogenesis allow cancer to spread to other organs causing metastasis. Indeed, a number of molecules that are involved in cytoskeleton re-organization and intracellular signaling have been investigated for their effects on tumor cell growth and metastasis. Alongside that, Amblyomin-X, a recombinant Kunitz-type protein, has been shown to reduce metastasis and tumor growth in in vivo experiments. In the present report, we provide a mechanistic insight to these antitumor effects, this is, Amblyomin-X modulates Rho-GTPases and uPAR signaling, and reduces the release of MMPs, leading to disruption of the actin cytoskeleton and decreased cell migration of tumor cell lines. Altogether, our data support a role for Amblyomin-X as a novel potential antitumor drug.

18.
Sci Rep ; 7(1): 1431, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469161

RESUMO

Thrombin is a multifunctional enzyme with a key role in the coagulation cascade. Its functional modulation can culminate into normal blood coagulation or thrombosis. Thus, the identification of novel potent inhibitors of thrombin are of immense importance. Sculptin is the first specific thrombin inhibitor identified in the transcriptomics analysis of tick's salivary glands. It consists of 168 residues having four similar repeats and evolutionary diverged from hirudin. Sculptin is a competitive, specific and reversible inhibitor of thrombin with a Ki of 18.3 ± 1.9 pM (k on 4.04 ± 0.03 × 107 M-1 s-1 and k off 0.65 ± 0.04 × 10-3 s-1). It is slowly consumed by thrombin eventually losing its activity. Contrary, sculptin is hydrolyzed by factor Xa and each polypeptide fragment is able to inhibit thrombin independently. A single domain of sculptin alone retains ~45% of inhibitory activity, which could bind thrombin in a bivalent fashion. The formation of a small turn/helical-like structure by active site binding residues of sculptin might have made it a more potent thrombin inhibitor. In addition, sculptin prolongs global coagulation parameters. In conclusion, sculptin and its independent domain(s) have strong potential to become novel antithrombotic therapeutics.


Assuntos
Fibrinolíticos/química , Hirudinas/química , Fragmentos de Peptídeos/química , Peptídeos/química , Trombose/prevenção & controle , Animais , Ligação Competitiva , Coagulação Sanguínea/fisiologia , Domínio Catalítico , Cristalografia por Raios X , Fator Xa/química , Fator Xa/metabolismo , Fibrinolíticos/metabolismo , Expressão Gênica , Hirudinas/genética , Hirudinas/metabolismo , Humanos , Hidrólise , Ixodidae/química , Cinética , Modelos Moleculares , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Trombose/sangue , Trombose/patologia
19.
Oncotarget ; 8(12): 19192-19204, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28186969

RESUMO

Medulloblastoma is a highly aggressive pediatric brain tumor, in which sporadic expression of the pluripotency factor OCT4 has been recently correlated with poor patient survival. However the contribution of specific OCT4 isoforms to tumor aggressiveness is still poorly understood. Here, we report that medulloblastoma cells stably overexpressing the OCT4A isoform displayed enhanced clonogenic, tumorsphere generation, and invasion capabilities. Moreover, in an orthotopic metastatic model of medulloblastoma, OCT4A overexpressing cells generated more developed, aggressive and infiltrative tumors, with tumor-bearing mice attaining advanced metastatic disease and shorter survival rates. Pro-oncogenic OCT4A effects were expression-level dependent and accompanied by distinct chromosomal aberrations. OCT4A overexpression in medulloblastoma cells also induced a marked differential expression of non-coding RNAs, including poorly characterized long non-coding RNAs and small nucleolar RNAs. Altogether, our findings support the relevance of pluripotency-related factors in the aggravation of medulloblastoma traits classically associated with poor clinical outcome, and underscore the prognostic and therapeutic value of OCT4A in this challenging type of pediatric brain cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Feminino , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator 3 de Transcrição de Octâmero/genética , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Oncotarget ; 8(12): 19192-19204, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15385

RESUMO

Medulloblastoma is a highly aggressive pediatric brain tumor, in which sporadic expression of the pluripotency factor OCT4 has been recently correlated with poor patient survival. However the contribution of specific OCT4 isoforms to tumor aggressiveness is still poorly understood. Here, we report that medulloblastoma cells stably overexpressing the OCT4A isoform displayed enhanced clonogenic, tumorsphere generation, and invasion capabilities. Moreover, in an orthotopic metastatic model of medulloblastoma, OCT4A overexpressing cells generated more developed, aggressive and infiltrative tumors, with tumor-bearing mice attaining advanced metastatic disease and shorter survival rates. Pro-oncogenic OCT4A effects were expression-level dependent and accompanied by distinct chromosomal aberrations. OCT4A overexpression in medulloblastoma cells also induced a marked differential expression of non-coding RNAs, including poorly characterized long non-coding RNAs and small nucleolar RNAs. Altogether, our findings support the relevance of pluripotency-related factors in the aggravation of medulloblastoma traits classically associated with poor clinical outcome, and underscore the prognostic and therapeutic value of OCT4A in this challenging type of pediatric brain cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA