Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Parasit Vectors ; 17(1): 201, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711091

RESUMO

PURPOSE: The rising burden of mosquito-borne diseases in Europe extends beyond urban areas, encompassing rural and semi-urban regions near managed and natural wetlands evidenced by recent outbreaks of Usutu and West Nile viruses. While wetland management policies focus on biodiversity and ecosystem services, few studies explore the impact on mosquito vectors. METHODS: Our research addresses this gap, examining juvenile mosquito and aquatic predator communities in 67 ditch sites within a South England coastal marsh subjected to different wetland management tiers. Using joint distribution models, we analyse how mosquito communities respond to abiotic and biotic factors influenced by wetland management. RESULTS: Of the 12 mosquito species identified, Culiseta annulata (Usutu virus vector) and Culex pipiens (Usutu and West Nile virus vector) constitute 47% of 6825 larval mosquitoes. Abundant predators include Coleoptera (water beetles) adults, Corixidae (water boatmen) and Zygoptera (Damselfy) larvae. Models reveal that tier 3 management sites (higher winter water levels, lower agricultural intensity) associated with shade and less floating vegetation are preferred by specific mosquito species. All mosquito species except Anopheles maculipennis s.l., are negatively impacted by potential predators. Culiseta annulata shows positive associations with shaded and turbid water, contrary to preferences of Corixidae predators. CONCLUSIONS: Tier 3 areas managed for biodiversity, characterised by higher seasonal water levels and reduced livestock grazing intensity, provide favourable habitats for key mosquito species that are known vectors of arboviruses, such as Usutu and West Nile. Our findings emphasise the impact of biodiversity-focused wetland management, altering mosquito breeding site vegetation to enhance vector suitability. Further exploration of these trade-offs is crucial for comprehending the broader implications of wetland management.


Assuntos
Biodiversidade , Culicidae , Mosquitos Vetores , Áreas Alagadas , Animais , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Culicidae/classificação , Culicidae/fisiologia , Culicidae/virologia , Ecossistema , Larva/fisiologia , Estações do Ano , Reino Unido , Culex/fisiologia , Culex/virologia , Culex/classificação , Inglaterra
2.
PLoS Comput Biol ; 20(4): e1012017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626207

RESUMO

Current malaria elimination targets must withstand a colossal challenge-resistance to the current gold standard antimalarial drug, namely artemisinin derivatives. If artemisinin resistance significantly expands to Africa or India, cases and malaria-related deaths are set to increase substantially. Spatial information on the changing levels of artemisinin resistance in Southeast Asia is therefore critical for health organisations to prioritise malaria control measures, but available data on artemisinin resistance are sparse. We use a comprehensive database from the WorldWide Antimalarial Resistance Network on the prevalence of non-synonymous mutations in the Kelch 13 (K13) gene, which are known to be associated with artemisinin resistance, and a Bayesian geostatistical model to produce spatio-temporal predictions of artemisinin resistance. Our maps of estimated prevalence show an expansion of the K13 mutation across the Greater Mekong Subregion from 2000 to 2022. Moreover, the period between 2010 and 2015 demonstrated the most spatial change across the region. Our model and maps provide important insights into the spatial and temporal trends of artemisinin resistance in a way that is not possible using data alone, thereby enabling improved spatial decision support systems on an unprecedented fine-scale spatial resolution. By predicting for the first time spatio-temporal patterns and extents of artemisinin resistance at the subcontinent level, this study provides critical information for supporting malaria elimination goals in Southeast Asia.


Assuntos
Antimaláricos , Artemisininas , Teorema de Bayes , Resistência a Medicamentos , Artemisininas/farmacologia , Sudeste Asiático/epidemiologia , Resistência a Medicamentos/genética , Antimaláricos/farmacologia , Humanos , Análise Espaço-Temporal , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Mutação , Malária/tratamento farmacológico , Malária/epidemiologia , Biologia Computacional , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia
3.
Epidemics ; 47: 100764, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38552550

RESUMO

BACKGROUND: Australian states and territories used test-trace-isolate-quarantine (TTIQ) systems extensively in their response to the COVID-19 pandemic in 2020-2021. We report on an analysis of Australian case data to estimate the impact of test-trace-isolate-quarantine systems on SARS-CoV-2 transmission. METHODS: Our analysis uses a novel mathematical modelling framework and detailed surveillance data on COVID-19 cases including dates of infection and dates of isolation. First, we directly translate an empirical distribution of times from infection to isolation into reductions in potential for onward transmission during periods of relatively low caseloads (tens to hundreds of reported cases per day). We then apply a simulation approach, validated against case data, to assess the impact of case-initiated contact tracing on transmission during a period of relatively higher caseloads and system stress (up to thousands of cases per day). RESULTS: We estimate that under relatively low caseloads in the state of New South Wales (tens of cases per day), TTIQ contributed to a 54% reduction in transmission. Under higher caseloads in the state of Victoria (hundreds of cases per day), TTIQ contributed to a 42% reduction in transmission. Our results also suggest that case-initiated contact tracing can support timely quarantine in times of system stress (thousands of cases per day). CONCLUSION: Contact tracing systems for COVID-19 in Australia were highly effective and adaptable in supporting the national suppression strategy from 2020-21, prior to the emergence of the Omicron variant in November 2021. TTIQ systems were critical to the maintenance of the strong suppression strategy and were more effective when caseloads were (relatively) low.

4.
Lancet Microbe ; 5(5): e442-e451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467129

RESUMO

BACKGROUND: The recent discovery of emerging relapsing fever group Borrelia (RFGB) species, such as Borrelia miyamotoi, poses a growing threat to public health. However, the global distribution and associated risk burden of these species remain uncertain. We aimed to map the diversity, distribution, and potential infection risk of RFGB. METHODS: We searched PubMed, Web of Science, GenBank, CNKI, and eLibrary from Jan 1, 1874, to Dec 31, 2022, for published articles without language restriction to extract distribution data for RFGB detection in vectors, animals, and humans, and clinical information about human patients. Only articles documenting RFGB infection events were included in this study, and data for RFGB detection in vectors, animals, or humans were composed into a dataset. We used three machine learning algorithms (boosted regression trees, random forest, and least absolute shrinkage and selection operator logistic regression) to assess the environmental, ecoclimatic, biological, and socioeconomic factors associated with the occurrence of four major RFGB species: Borrelia miyamotoi, Borrelia lonestari, Borrelia crocidurae, and Borrelia hermsii; and mapped their worldwide risk level. FINDINGS: We retrieved 13 959 unique studies, among which 697 met the selection criteria and were used for data extraction. 29 RFGB species have been recorded worldwide, of which 27 have been identified from 63 tick species, 12 from 61 wild animals, and ten from domestic animals. 16 RFGB species caused human infection, with a cumulative count of 26 583 cases reported from Jan 1, 1874, to Dec 31, 2022. Borrelia recurrentis (17 084 cases) and Borrelia persica (2045 cases) accounted for the highest proportion of human infection. B miyamotoi showed the widest distribution among all RFGB, with a predicted environmentally suitable area of 6·92 million km2, followed by B lonestari (1·69 million km2), B crocidurae (1·67 million km2), and B hermsii (1·48 million km2). The habitat suitability index of vector ticks and climatic factors, such as the annual mean temperature, have the most significant effect among all predictive models for the geographical distribution of the four major RFGB species. INTERPRETATION: The predicted high-risk regions are considerably larger than in previous reports. Identification, surveillance, and diagnosis of RFGB infections should be prioritised in high-risk areas, especially within low-income regions. FUNDING: National Key Research and Development Program of China.


Assuntos
Borrelia , Febre Recorrente , Borrelia/isolamento & purificação , Humanos , Febre Recorrente/epidemiologia , Febre Recorrente/microbiologia , Febre Recorrente/diagnóstico , Animais
5.
Epidemics ; 47: 100763, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513465

RESUMO

The availability of COVID-19 vaccines promised a reduction in the severity of disease and relief from the strict public health and social measures (PHSMs) imposed in many countries to limit spread and burden of COVID-19. We were asked to define vaccine coverage thresholds for Australia's transition to easing restrictions and reopening international borders. Using evidence of vaccine effectiveness against the then-circulating Delta variant, we used a mathematical model to determine coverage targets. The absence of any COVID-19 infections in many sub-national jurisdictions in Australia posed particular methodological challenges. We used a novel metric called Transmission Potential (TP) as a proxy measure of the population-level effective reproduction number. We estimated TP of the Delta variant under a range of PHSMs, test-trace-isolate-quarantine (TTIQ) efficiencies, vaccination coverage thresholds, and age-based vaccine allocation strategies. We found that high coverage across all ages (≥70%) combined with ongoing TTIQ and minimal PHSMs was sufficient to avoid lockdowns. At lesser coverage (≤60%) rapid case escalation risked overwhelming of the health sector or the need to reimpose stricter restrictions. Maintaining low case numbers was most beneficial for health and the economy, and at higher coverage levels (≥80%) further easing of restrictions was deemed possible. These results directly informed easing of COVID-19 restrictions in Australia.

6.
iScience ; 27(2): 108942, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327789

RESUMO

Partial replacement of resident Aedes aegypti mosquitoes with introduced mosquitoes carrying certain strains of inherited Wolbachia symbionts can result in transmission blocking of dengue and other viruses of public health importance. Wolbachia strain wAlbB is an effective transmission blocker and stable at high temperatures, making it particularly suitable for hot tropical climates. Following trial field releases in Malaysia, releases using wAlbB Ae. aegypti have become operationalized by the Malaysian health authorities. We report here on an average reduction in dengue fever of 62.4% (confidence intervals 50-71%) in 20 releases sites when compared to 76 control sites in high-rise residential areas. Importantly the level of dengue reduction increased with Wolbachia frequency, with 75.8% reduction (61-87%) estimated at 100% Wolbachia frequency. These findings indicate large impacts of wAlbB Wolbachia invasions on dengue fever incidence in an operational setting, with incidence expected to further decrease as wider areas are invaded.

7.
Malar J ; 22(1): 356, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990242

RESUMO

BACKGROUND: Geostatistical analysis of health data is increasingly used to model spatial variation in malaria prevalence, burden, and other metrics. Traditional inference methods for geostatistical modelling are notoriously computationally intensive, motivating the development of newer, approximate methods for geostatistical analysis or, more broadly, computational modelling of spatial processes. The appeal of faster methods is particularly great as the size of the region and number of spatial locations being modelled increases. METHODS: This work presents an applied comparison of four proposed 'fast' computational methods for spatial modelling and the software provided to implement them-Integrated Nested Laplace Approximation (INLA), tree boosting with Gaussian processes and mixed effect models (GPBoost), Fixed Rank Kriging (FRK) and Spatial Random Forests (SpRF). The four methods are illustrated by estimating malaria prevalence on two different spatial scales-country and continent. The performance of the four methods is compared on these data in terms of accuracy, computation time, and ease of implementation. RESULTS: Two of these methods-SpRF and GPBoost-do not scale well as the data size increases, and so are likely to be infeasible for larger-scale analysis problems. The two remaining methods-INLA and FRK-do scale well computationally, however the resulting model fits are very sensitive to the user's modelling assumptions and parameter choices. The binomial observation distribution commonly used for disease prevalence mapping with INLA fails to account for small-scale overdispersion present in the malaria prevalence data, which can lead to poor predictions. Selection of an appropriate alternative such as the Beta-binomial distribution is required to produce a reliable model fit. The small-scale random effect term in FRK overcomes this pitfall, but FRK model estimates are very reliant on providing a sufficient number and appropriate configuration of basis functions. Unfortunately the computation time for FRK increases rapidly with increasing basis resolution. CONCLUSIONS: INLA and FRK both enable scalable geostatistical modelling of malaria prevalence data. However care must be taken when using both methods to assess the fit of the model to data and plausibility of predictions, in order to select appropriate model assumptions and parameters.


Assuntos
Malária , Modelos Estatísticos , Humanos , Simulação por Computador , Software , Análise Espacial , Malária/epidemiologia , Teorema de Bayes
8.
Proc Biol Sci ; 290(2005): 20231437, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37644838

RESUMO

Since the emergence of SARS-CoV-2 in 2019 through to mid-2021, much of the Australian population lived in a COVID-19-free environment. This followed the broadly successful implementation of a strong suppression strategy, including international border closures. With the availability of COVID-19 vaccines in early 2021, the national government sought to transition from a state of minimal incidence and strong suppression activities to one of high vaccine coverage and reduced restrictions but with still-manageable transmission. This transition is articulated in the national 're-opening' plan released in July 2021. Here, we report on the dynamic modelling study that directly informed policies within the national re-opening plan including the identification of priority age groups for vaccination, target vaccine coverage thresholds and the anticipated requirements for continued public health measures-assuming circulation of the Delta SARS-CoV-2 variant. Our findings demonstrated that adult vaccine coverage needed to be at least 60% to minimize public health and clinical impacts following the establishment of community transmission. They also supported the need for continued application of test-trace-isolate-quarantine and social measures during the vaccine roll-out phase and beyond.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , SARS-CoV-2 , Incidência , COVID-19/epidemiologia , COVID-19/prevenção & controle , Austrália/epidemiologia
9.
Sci Rep ; 13(1): 8763, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253758

RESUMO

As of January 2021, Australia had effectively controlled local transmission of COVID-19 despite a steady influx of imported cases and several local, but contained, outbreaks in 2020. Throughout 2020, state and territory public health responses were informed by weekly situational reports that included an ensemble forecast of daily COVID-19 cases for each jurisdiction. We present here an analysis of one forecasting model included in this ensemble across the variety of scenarios experienced by each jurisdiction from May to October 2020. We examine how successfully the forecasts characterised future case incidence, subject to variations in data timeliness and completeness, showcase how we adapted these forecasts to support decisions of public health priority in rapidly-evolving situations, evaluate the impact of key model features on forecast skill, and demonstrate how to assess forecast skill in real-time before the ground truth is known. Conditioning the model on the most recent, but incomplete, data improved the forecast skill, emphasising the importance of developing strong quantitative models of surveillance system characteristics, such as ascertainment delay distributions. Forecast skill was highest when there were at least 10 reported cases per day, the circumstances in which authorities were most in need of forecasts to aid in planning and response.


Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/epidemiologia , Surtos de Doenças , Saúde Pública , Incidência , Previsões
10.
Elife ; 122023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37057888

RESUMO

Background: Buruli ulcer (BU) is a neglected tropical disease caused by infection of subcutaneous tissue with Mycobacterium ulcerans. BU is commonly reported across rural regions of Central and West Africa but has been increasing dramatically in temperate southeast Australia around the major metropolitan city of Melbourne, with most disease transmission occurring in the summer months. Previous research has shown that Australian native possums are reservoirs of M. ulcerans and that they shed the bacteria in their fecal material (excreta). Field surveys show that locales where possums harbor M. ulcerans overlap with human cases of BU, raising the possibility of using possum excreta surveys to predict the risk of disease occurrence in humans. Methods: We thus established a highly structured 12 month possum excreta surveillance program across an area of 350 km2 in the Mornington Peninsula area 70 km south of Melbourne, Australia. The primary objective of our study was to assess using statistical modeling if M. ulcerans surveillance of possum excreta provided useful information for predicting future human BU case locations. Results: Over two sampling campaigns in summer and winter, we collected 2,282 possum excreta specimens of which 11% were PCR positive for M. ulcerans-specific DNA. Using the spatial scanning statistical tool SaTScan, we observed non-random, co-correlated clustering of both M. ulcerans positive possum excreta and human BU cases. We next trained a statistical model with the Mornington Peninsula excreta survey data to predict the future likelihood of human BU cases occurring in the region. By observing where human BU cases subsequently occurred, we show that the excreta model performance was superior to a null model trained using the previous year's human BU case incidence data (AUC 0.66 vs 0.55). We then used data unseen by the excreta-informed model from a new survey of 661 possum excreta specimens in Geelong, a geographically separate BU endemic area to the southwest of Melbourne, to prospectively predict the location of human BU cases in that region. As for the Mornington Peninsula, the excreta-based BU prediction model outperformed the null model (AUC 0.75 vs 0.50) and pinpointed specific locations in Geelong where interventions could be deployed to interrupt disease spread. Conclusions: This study highlights the One Health nature of BU by confirming a quantitative relationship between possum excreta shedding of M. ulcerans and humans developing BU. The excreta survey-informed modeling we have described will be a powerful tool for the efficient targeting of public health responses to stop BU. Funding: This research was supported by the National Health and Medical Research Council of Australia and the Victorian Government Department of Health (GNT1152807 and GNT1196396).


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Humanos , Austrália/epidemiologia , Derrame de Bactérias , Zoonoses Bacterianas/microbiologia , Zoonoses Bacterianas/transmissão , Úlcera de Buruli/epidemiologia , Úlcera de Buruli/microbiologia , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/estatística & dados numéricos , Fezes/microbiologia , Modelos Estatísticos , Mycobacterium ulcerans/genética , Mycobacterium ulcerans/isolamento & purificação , Phalangeridae/microbiologia
11.
Elife ; 122023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661303

RESUMO

Against a backdrop of widespread global transmission, a number of countries have successfully brought large outbreaks of COVID-19 under control and maintained near-elimination status. A key element of epidemic response is the tracking of disease transmissibility in near real-time. During major outbreaks, the effective reproduction number can be estimated from a time-series of case, hospitalisation or death counts. In low or zero incidence settings, knowing the potential for the virus to spread is a response priority. Absence of case data means that this potential cannot be estimated directly. We present a semi-mechanistic modelling framework that draws on time-series of both behavioural data and case data (when disease activity is present) to estimate the transmissibility of SARS-CoV-2 from periods of high to low - or zero - case incidence, with a coherent transition in interpretation across the changing epidemiological situations. Of note, during periods of epidemic activity, our analysis recovers the effective reproduction number, while during periods of low - or zero - case incidence, it provides an estimate of transmission risk. This enables tracking and planning of progress towards the control of large outbreaks, maintenance of virus suppression, and monitoring the risk posed by re-introduction of the virus. We demonstrate the value of our methods by reporting on their use throughout 2020 in Australia, where they have become a central component of the national COVID-19 response.


Assuntos
COVID-19 , Epidemias , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Incidência , Surtos de Doenças
12.
Glob Chang Biol ; 28(1): 86-97, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668617

RESUMO

Due to global climate change-induced shifts in species distributions, estimating changes in community composition through the use of Species Distribution Models has become a key management tool. Being able to determine how species associations change along environmental gradients is likely to be pivotal in exploring the magnitude of future changes in species' distributions. This is particularly important in connectivity-limited ecosystems, such as freshwater ecosystems, where increased human translocation is creating species associations over previously unseen environmental gradients. Here, we use a large-scale presence-absence dataset of freshwater fish from lakes across the Fennoscandian region in a Joint Species Distribution Model, to measure the effect of temperature on species associations. We identified a trend of negative associations between species tolerant of cold waters and those tolerant of warmer waters, as well as positive associations between several more warm-tolerant species, with these associations often shifting depending on local temperatures. Our results confirm that freshwater ecosystems can expect to see a large-scale shift towards communities dominated by more warm-tolerant species. While there remains much work to be done to predict exactly where and when local extinctions may take place, the model implemented provides a starting-point for the exploration of climate-driven community trends. This approach is especially informative in regards to determining which species associations are most central in shaping future community composition, and which areas are most vulnerable to local extinctions.


Assuntos
Mudança Climática , Ecossistema , Animais , Peixes , Humanos , Lagos , Temperatura
13.
Sci Rep ; 11(1): 4806, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637816

RESUMO

Understanding human movement patterns at local, national and international scales is critical in a range of fields, including transportation, logistics and epidemiology. Data on human movement is increasingly available, and when combined with statistical models, enables predictions of movement patterns across broad regions. Movement characteristics, however, strongly depend on the scale and type of movement captured for a given study. The models that have so far been proposed for human movement are best suited to specific spatial scales and types of movement. Selecting both the scale of data collection, and the appropriate model for the data remains a key challenge in predicting human movements. We used two different data sources on human movement in Australia, at different spatial scales, to train a range of statistical movement models and evaluate their ability to predict movement patterns for each data type and scale. Whilst the five commonly-used movement models we evaluated varied markedly between datasets in their predictive ability, we show that an ensemble modelling approach that combines the predictions of these models consistently outperformed all individual models against hold-out data.

14.
Sci Rep ; 11(1): 3304, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558621

RESUMO

Climate change threatens biodiversity directly by influencing biophysical variables that drive species' geographic distributions and indirectly through socio-economic changes that influence land use patterns, driven by global consumption, production and climate. To date, no detailed analyses have been produced that assess the relative importance of, or interaction between, these direct and indirect climate change impacts on biodiversity at large scales. Here, we apply a new integrated modelling framework to quantify the relative influence of biophysical and socio-economically mediated impacts on avian species in Vietnam and Australia and we find that socio-economically mediated impacts on suitable ranges are largely outweighed by biophysical impacts. However, by translating economic futures and shocks into spatially explicit predictions of biodiversity change, we now have the power to analyse in a consistent way outcomes for nature and people of any change to policy, regulation, trading conditions or consumption trend at any scale from sub-national to global.

15.
BMC Med ; 18(1): 332, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33087179

RESUMO

BACKGROUND: Asymptomatic or subclinical SARS-CoV-2 infections are often unreported, which means that confirmed case counts may not accurately reflect underlying epidemic dynamics. Understanding the level of ascertainment (the ratio of confirmed symptomatic cases to the true number of symptomatic individuals) and undetected epidemic progression is crucial to informing COVID-19 response planning, including the introduction and relaxation of control measures. Estimating case ascertainment over time allows for accurate estimates of specific outcomes such as seroprevalence, which is essential for planning control measures. METHODS: Using reported data on COVID-19 cases and fatalities globally, we estimated the proportion of symptomatic cases (i.e. any person with any of fever ≥ 37.5 °C, cough, shortness of breath, sudden onset of anosmia, ageusia or dysgeusia illness) that were reported in 210 countries and territories, given those countries had experienced more than ten deaths. We used published estimates of the baseline case fatality ratio (CFR), which was adjusted for delays and under-ascertainment, then calculated the ratio of this baseline CFR to an estimated local delay-adjusted CFR to estimate the level of under-ascertainment in a particular location. We then fit a Bayesian Gaussian process model to estimate the temporal pattern of under-ascertainment. RESULTS: Based on reported cases and deaths, we estimated that, during March 2020, the median percentage of symptomatic cases detected across the 84 countries which experienced more than ten deaths ranged from 2.4% (Bangladesh) to 100% (Chile). Across the ten countries with the highest number of total confirmed cases as of 6 July 2020, we estimated that the peak number of symptomatic cases ranged from 1.4 times (Chile) to 18 times (France) larger than reported. Comparing our model with national and regional seroprevalence data where available, we find that our estimates are consistent with observed values. Finally, we estimated seroprevalence for each country. As of 7 June, our seroprevalence estimates range from 0% (many countries) to 13% (95% CrI 5.6-24%) (Belgium). CONCLUSIONS: We found substantial under-ascertainment of symptomatic cases, particularly at the peak of the first wave of the SARS-CoV-2 pandemic, in many countries. Reported case counts will therefore likely underestimate the rate of outbreak growth initially and underestimate the decline in the later stages of an epidemic. Although there was considerable under-reporting in many locations, our estimates were consistent with emerging serological data, suggesting that the proportion of each country's population infected with SARS-CoV-2 worldwide is generally low.


Assuntos
Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Teorema de Bayes , Betacoronavirus , COVID-19 , Humanos , SARS-CoV-2 , Estudos Soroepidemiológicos
16.
PLoS Negl Trop Dis ; 14(8): e0008411, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776929

RESUMO

Approximately 150 triatomine species are suspected to be infected with the Chagas parasite, Trypanosoma cruzi, but they differ in the risk they pose to human populations. The largest risk comes from species that have a domestic life cycle and these species have been targeted by indoor residual spraying campaigns, which have been successful in many locations. It is now important to consider residual transmission that may be linked to persistent populations of dominant vectors, or to secondary or minor vectors. The aim of this project was to define the geographical distributions of the community of triatomine species across the Chagas endemic region. Presence-only data with over 12, 000 observations of triatomine vectors were extracted from a public database and target-group background data were generated to account for sampling bias in the presence data. Geostatistical regression was then applied to estimate species distributions and fine-scale distribution maps were generated for thirty triatomine vector species including those found within one or two countries and species that are more widely distributed from northern Argentina to Guatemala, Bolivia to southern Mexico, and Mexico to the southern United States of America. The results for Rhodnius pictipes, Panstrongylus geniculatus, Triatoma dimidiata, Triatoma gerstaeckeri, and Triatoma infestans are presented in detail, including model predictions and uncertainty in these predictions, and the model validation results for each of the 30 species are presented in full. The predictive maps for all species are made publicly available so that they can be used to assess the communities of vectors present within different regions of the endemic zone. The maps are presented alongside key indicators for the capacity of each species to transmit T. cruzi to humans. These indicators include infection prevalence, evidence for human blood meals, and colonisation or invasion of homes. A summary of the published evidence for these indicators shows that the majority of the 30 species mapped by this study have the potential to transmit T. cruzi to humans.


Assuntos
Insetos Vetores , Triatominae/parasitologia , Trypanosoma cruzi , Distribuição Animal , Animais , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Habitação , Humanos , América Latina/epidemiologia , Modelos Teóricos
17.
Elife ; 92020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32788039

RESUMO

As of 1 May 2020, there had been 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. The epidemic had been in decline since mid-March, with 308 cases confirmed nationally since 14 April. This suggests that the collective actions of the Australian public and government authorities in response to COVID-19 were sufficiently early and assiduous to avert a public health crisis - for now. Analysing factors that contribute to individual country experiences of COVID-19, such as the intensity and timing of public health interventions, will assist in the next stage of response planning globally. We describe how the epidemic and public health response unfolded in Australia up to 13 April. We estimate that the effective reproduction number was likely below one in each Australian state since mid-March and forecast that clinical demand would remain below capacity thresholds over the forecast period (from mid-to-late April).


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Austrália/epidemiologia , COVID-19 , Criança , Pré-Escolar , Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/organização & administração , Controle de Doenças Transmissíveis/estatística & dados numéricos , Infecções por Coronavirus/prevenção & controle , Feminino , Previsões , Geografia Médica , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Saúde Pública , Quarentena , SARS-CoV-2 , Viagem , Adulto Jovem
18.
Trends Ecol Evol ; 35(1): 56-67, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676190

RESUMO

With the expansion in the quantity and types of biodiversity data being collected, there is a need to find ways to combine these different sources to provide cohesive summaries of species' potential and realized distributions in space and time. Recently, model-based data integration has emerged as a means to achieve this by combining datasets in ways that retain the strengths of each. We describe a flexible approach to data integration using point process models, which provide a convenient way to translate across ecological currencies. We highlight recent examples of large-scale ecological models based on data integration and outline the conceptual and technical challenges and opportunities that arise.


Assuntos
Biodiversidade , Ecologia , Modelos Teóricos
19.
Nat Microbiol ; 4(9): 1508-1515, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31182801

RESUMO

Dengue is a mosquito-borne viral infection that has spread throughout the tropical world over the past 60 years and now affects over half the world's population. The geographical range of dengue is expected to further expand due to ongoing global phenomena including climate change and urbanization. We applied statistical mapping techniques to the most extensive database of case locations to date to predict global environmental suitability for the virus as of 2015. We then made use of climate, population and socioeconomic projections for the years 2020, 2050 and 2080 to project future changes in virus suitability and human population at risk. This study is the first to consider the spread of Aedes mosquito vectors to project dengue suitability. Our projections provide a key missing piece of evidence for the changing global threat of vector-borne disease and will help decision-makers worldwide to better prepare for and respond to future changes in dengue risk.


Assuntos
Aedes/fisiologia , Dengue/transmissão , Mosquitos Vetores , Aedes/virologia , Animais , Mudança Climática , Dengue/virologia , Vírus da Dengue/fisiologia , Geografia Médica , Saúde Global , Humanos , Modelos Estatísticos , Fatores de Risco , Urbanização/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...