Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2310842120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963249

RESUMO

Horizontal transfer of F-like plasmids by bacterial conjugation is responsible for disseminating antibiotic resistance and virulence determinants among pathogenic Enterobacteriaceae species, a growing health concern worldwide. Central to this process is the conjugative F pilus, a long extracellular filamentous polymer that extends from the surface of plasmid donor cells, allowing it to probe the environment and make contact with the recipient cell. It is well established that the F pilus can retract to bring mating pair cells in tight contact before DNA transfer. However, whether DNA transfer can occur through the extended pilus has been a subject of active debate. In this study, we use live-cell microscopy to show that while most transfer events occur between cells in direct contact, the F pilus can indeed serve as a conduit for the DNA during transfer between physically distant cells. Our findings enable us to propose a unique model for conjugation that revises our understanding of the DNA transfer mechanism and the dissemination of drug resistance and virulence genes within complex bacterial communities.


Assuntos
Escherichia coli , Genes Bacterianos , Escherichia coli/genética , Plasmídeos/genética , Fímbrias Bacterianas/genética , DNA Bacteriano/genética , Conjugação Genética , DNA , Transferência Genética Horizontal
2.
Nucleic Acids Res ; 51(6): 2790-2799, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36772829

RESUMO

Dissemination of antibiotic resistance, a current societal challenge, is often driven by horizontal gene transfer through bacterial conjugation. During conjugative plasmid transfer, single-stranded (ss) DNA is transferred from the donor to the recipient cell. Subsequently, a complete double-stranded (ds) plasmid molecule is generated and plasmid-encoded genes are expressed, allowing successful establishment of the transconjugant cell. Such dynamics of transmission can be modulated by host- or plasmid-encoded factors, either in the donor or in the recipient cell. We applied transposon insertion sequencing to identify host-encoded factors that affect conjugative transfer frequency in Escherichia coli. Disruption of the recipient uvrD gene decreased the acquisition frequency of conjugative plasmids belonging to different incompatibility groups. Results from various UvrD mutants suggested that dsDNA binding activity and interaction with RNA polymerase are dispensable, but ATPase activity is required for successful plasmid establishment of transconjugant cells. Live-cell microscopic imaging showed that the newly transferred ssDNA within a uvrD- recipient often failed to be converted to dsDNA. Our work suggested that in addition to its role in maintaining genome integrity, UvrD is also key for the establishment of horizontally acquired plasmid DNA that drives genome diversity and evolution.


Assuntos
DNA Helicases , DNA de Cadeia Simples , Proteínas de Escherichia coli , Conjugação Genética/genética , DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transferência Genética Horizontal/genética , Plasmídeos/genética
3.
Nat Commun ; 14(1): 294, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653393

RESUMO

Conjugation is a contact-dependent mechanism for the transfer of plasmid DNA between bacterial cells, which contributes to the dissemination of antibiotic resistance. Here, we use live-cell microscopy to visualise the intracellular dynamics of conjugative transfer of F-plasmid in E. coli, in real time. We show that the transfer of plasmid in single-stranded form (ssDNA) and its subsequent conversion into double-stranded DNA (dsDNA) are fast and efficient processes that occur with specific timing and subcellular localisation. Notably, the ssDNA-to-dsDNA conversion determines the timing of plasmid-encoded protein production. The leading region that first enters the recipient cell carries single-stranded promoters that allow the early and transient synthesis of leading proteins immediately upon entry of the ssDNA plasmid. The subsequent conversion into dsDNA turns off leading gene expression, and activates the expression of other plasmid genes under the control of conventional double-stranded promoters. This molecular strategy allows for the timely production of factors sequentially involved in establishing, maintaining and disseminating the plasmid.


Assuntos
Conjugação Genética , Escherichia coli , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos/genética , DNA , DNA de Cadeia Simples/genética , Transferência Genética Horizontal
4.
Methods Mol Biol ; 2476: 63-74, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35635697

RESUMO

Bacterial genomes are highly plastic and evolve rapidly by acquiring new genetic information through horizontal gene transfer mechanisms. Capturing DNA transfer by conjugation between bacterial cells in real time is relevant to address bacterial genomes' dynamic architecture comprehensively. Here, we describe a method allowing the direct visualization of bacterial conjugation in live cells, including the fluorescent labeling of the conjugative pilus and the monitoring of plasmid DNA transfer from donor to recipient cells.


Assuntos
Conjugação Genética , Fímbrias Bacterianas , DNA , Fímbrias Bacterianas/genética , Transferência Genética Horizontal , Plasmídeos/genética
5.
Elife ; 102021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498586

RESUMO

Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.


Assuntos
Fenômenos Fisiológicos Bacterianos , Aprendizado Profundo , Ensaios de Triagem em Larga Escala/métodos , Microbiota , Modelos Biológicos , Biofilmes , Microscopia/métodos , Especificidade da Espécie
6.
Genes (Basel) ; 11(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105635

RESUMO

Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/genética , Fator F/genética , Transferência Genética Horizontal/genética , Bactérias Gram-Negativas/genética , DNA Bacteriano/genética , Fator F/fisiologia , Fímbrias Bacterianas/metabolismo
7.
Genes (Basel) ; 11(10)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081159

RESUMO

Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we investigated the genetic factors involved in the prevalence of the IncI conjugative plasmid pESBL, which was isolated from the Escherichia coli O104:H4 outbreak strain in Germany in 2011. Using transposon-insertion sequencing, we identified the pESBL partitioning locus (par). Genetic, biochemical and microscopic approaches allowed pESBL to be characterized as a new member of the Type Ib partitioning system. Inactivation of par caused mis-segregation of pESBL followed by post-segregational killing (PSK), resulting in a great fitness disadvantage but apparent plasmid stability in the population of viable cells. We constructed a variety of pESBL derivatives with different combinations of mutations in par, conjugational transfer (oriT) and pnd toxin-antitoxin (TA) genes. Only the triple mutant exhibited plasmid-free cells in viable cell populations. Time-lapse tracking of plasmid dynamics in microfluidics indicated that inactivation of pnd improved the survival of plasmid-free cells and allowed oriT-dependent re-acquisition of the plasmid. Altogether, the three factors-active partitioning, toxin-antitoxin and conjugational transfer-are all involved in the prevalence of pESBL in the E. coli population.


Assuntos
Conjugação Genética , Infecções por Escherichia coli/transmissão , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Transferência Genética Horizontal , Plasmídeos/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Humanos , Sistemas Toxina-Antitoxina/genética
8.
FEMS Microbiol Rev ; 44(6): 782-792, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32761242

RESUMO

Drug-efflux by pump proteins is one of the major mechanisms of antibiotic resistance in bacteria. Here, we use quantitative fluorescence microscopy to investigate the real-time dynamics of drug accumulation and efflux in live E. coli cells. We visualize simultaneously the intrinsically fluorescent protein-synthesis inhibitor tetracycline (Tc) and the fluorescently labelled Tc-specific efflux pump, TetA. We show that Tc penetrates the cells within minutes and accumulates to stable intracellular concentration after ∼20 min. The final level of drug accumulation reflects the balance between Tc-uptake by the cells and Tc-efflux by pump proteins. In wild-type Tc-sensitive cells, drug accumulation is significantly limited by the activity of the multidrug efflux pump, AcrAB-TolC. Tc-resistance wild-type cells carrying a plasmid-borne Tn10 transposon contain variable amounts of TetA protein, produced under steady-state repression by the TetR repressor. TetA content heterogeneity determines the cells' initial ability to efflux Tc. Yet, efflux remains partial until the synthesis of additional TetA pumps allows for Tc-efflux activity to surpass Tc-uptake. Cells overproducing TetA no longer accumulate Tc and become resistant to high concentrations of the drug. This work uncovers the dynamic balance between drug entry, protein-synthesis inhibition, efflux-pump production, drug-efflux activity and drug-resistance levels.


Assuntos
Antiporters/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Tetraciclina/metabolismo , Microscopia de Fluorescência , Resistência a Tetraciclina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA