Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 140(4): 1337-1347, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29284266

RESUMO

The irreversible transformation from an icosahedral quasicrystal (i-QC) CaAu4.39Al1.61 to its cubic 2/1 crystalline approximant (CA) Ca13Au56.31(3)Al21.69 (CaAu4.33(1)Al1.67, Pa3̅ (No. 205); Pearson symbol: cP728; a = 23.8934(4)), starting at ∼570 °C and complete by ∼650 °C, is discovered from in situ, high-energy, variable-temperature powder X-ray diffraction (PXRD), thereby providing direct experimental evidence for the relationship between QCs and their associated CAs. The new cubic phase crystallizes in a Tsai-type approximant structure under the broader classification of polar intermetallic compounds, in which atoms of different electronegativities, viz., electronegative Au + Al vs electropositive Ca, are arranged in concentric shells. From a structural chemical perspective, the outermost shell of this cubic approximant may be described as interpenetrating and edge-sharing icosahedra, a perspective that is obtained by splitting the traditional structural description of this shell as a 92-atom rhombic triacontahedron into an 80-vertex cage of primarily Au [Au59.86(2)Al17.14□3.00] and an icosahedral shell of only Al [Al10.5□1.5]. Following the proposal that the cubic 2/1 CA approximates the structure of the i-QC and on the basis of the observed transformation, an atomic site analysis of the 2/1 CA, which shows a preference to maximize the number of heteroatomic Au-Al nearest neighbor contacts over homoatomic Al-Al contacts, implies a similar outcome for the i-QC structure. Analysis of the most intense reflections in the diffraction pattern of the cubic 2/1 CA that changed during the phase transformation shows correlations with icosahedral symmetry, and the stability of this cubic phase is assessed using valence electron counts. According to electronic structure calculations, a cubic 1/1 CA, "Ca24Au88Al64" (CaAu3.67Al2.67) is proposed.

3.
Nat Commun ; 8(1): 1083, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057914

RESUMO

Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. However, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. Here, we report a unique shape memory behavior in CaFe2As2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress-strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonal phase transformation. Our results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr2Si2-structured intermetallic compounds.

4.
Inorg Chem ; 55(20): 10425-10437, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27682453

RESUMO

A new icosahedral quasicrystalline phase, CaAu4.5-xAl1.5+x [0.11 ≤ x ≤ 0.40(6); CaAu4.4Al1.6, aQC = 5.383(4) Å, and Pm3̅ 5̅], and its lowest-order 1/0 cubic crystalline approximant phase, CaAu3+xAl1-x [0 ≤ x ≤ 0.31(1); a = 9.0766(5)-9.1261(8) Å, Pa3̅ (No. 205), and Pearson symbol cP40], have been discovered in the Ca-poor region of the Ca-Au-Al system. In the crystalline approximant, eight [Au3-xAl1+x] tetrahedra fill the unit cell, and each tetrahedron is surrounded by four Ca atoms, thus forming a three-dimensional network of {Ca4/4[Au3-xAl1+x]} tetrahedral stars. A computational study of Au and Al site preferences concurs with the experimental results, which indicate a preference for near-neighbor Au-Al interactions over Au-Au and Al-Al interactions. Analysis of the electronic density of states and the associated crystal orbital Hamilton population curves was used to rationalize the descriptions of CaAu4.5-xAl1.5+x [0.11 ≤ x ≤ 0.46(6)] and CaAu3+xAl1-x [0 ≤ x ≤ 0.31(1)] as polar intermetallic species, whereby Ca atoms engage in polar covalent bonding with the electronegative, electron-deficient [Au3-xAl1+x] tetrahedral clusters and the observed phase width of the crystalline approximant.

5.
Phys Rev Lett ; 114(5): 057001, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25699463

RESUMO

Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe(0.953)Co(0.047))(2)As(2). These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T(S), sets in well above the stripe antiferromagnetic ordering at T(N). We find that the temperature-dependent dynamic susceptibility displays an anomaly at T(S) followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. Our findings can be consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.

6.
Sci Technol Adv Mater ; 15(4): 044801, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877699

RESUMO

Progress in our understanding of the magnetic properties of R-containing icosahedral quasicrystals (R = rare earth element) from over 20 years of experimental effort is reviewed. This includes the much studied R-Mg-Zn and R-Mg-Cd ternary systems, as well as several magnetic quasicrystals that have been discovered and investigated more recently including Sc-Fe-Zn, R-Ag-In, Yb-Au-Al, the recently synthesized R-Cd binary quasicrystals, and their periodic approximants. In many ways, the magnetic properties among these quasicrystals are very similar. However, differences are observed that suggest new experiments and promising directions for future research.

7.
Inorg Chem ; 52(16): 9399-408, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909791

RESUMO

The results of crystallographic analysis, magnetic characterization, and theoretical assessment of ß-Mn-type Co-Zn intermetallics prepared using high-temperature methods are presented. These ß-Mn Co-Zn phases crystallize in the space group P4(1)32 [Pearson symbol cP20; a = 6.3555(7)-6.3220(7)], and their stoichiometry may be expressed as Co(8+x)Zn(12-x) [1.7(2) < x < 2.2(2)]. According to a combination of single-crystal X-ray diffraction, neutron powder diffraction, and scanning electron microscopy, atomic site occupancies establish clear preferences for Co atoms in the 8c sites and Zn atoms in the 12d sites, with all additional Co atoms replacing some Zn atoms, a result that can be rationalized by electronic structure calculations. Magnetic measurements and neutron powder diffraction of an equimolar Co:Zn sample confirm ferromagnetism in this phase with a Curie temperature of ∼420 K. Neutron powder diffraction and electronic structure calculations using the local spin density approximation indicate that the spontaneous magnetization of this phase arises exclusively from local moments at the Co atoms. Inspection of the atomic arrangements of Co(8+x)Zn(12-x) reveals that the ß-Mn aristotype may be derived from an ordered defect, cubic Laves phase (MgCu2-type) structure. Structural optimization procedures using the Vienna ab initio simulation package (VASP) and starting from the undistorted, defect Laves phase structure achieved energy minimization at the observed ß-Mn structure type, a result that offers greater insight into the ß-Mn structure type and establishes a closer relationship with the corresponding α-Mn structure (cI58).

8.
Nat Mater ; 12(8): 714-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23749264

RESUMO

Examples of stable binary icosahedral quasicrystals are relatively rare, and at present there are no known examples featuring localized magnetic moments. These would represent an ideal model system for attaining a deeper understanding of the nature of magnetic interactions in aperiodic lattices. Here we report the discovery of a family of at least seven rare earth icosahedral binary quasicrystals, i-R-Cd (R = Gd to Tm, Y), six of which bear localized magnetic moments. Our work highlights the importance of carefully motivated searches through phase space and supports the proposal that, like icosahedral Sc12Zn88 (ref. ), binary quasicrystalline phases may well exist nearby known crystalline approximants, perhaps as peritectically forming compounds with very limited liquidus surfaces, offering very limited ranges of composition/temperature for primary solidification.

10.
Nat Mater ; 8(6): 471-5, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19404240

RESUMO

The discovery of a new family of high-T(C) materials, the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent: for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets, and that superconductivity can be induced by either chemical substitution or application of pressure, in sharp contrast to the cuprate family of materials. The structure and properties of chemically substituted samples are known to be intimately linked; however, remarkably little is known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe2As2, namely suppression of the tetragonal-to-orthorhombic phase transition and reduction in the As-Fe-As bond angle and Fe-Fe distance, show the same behaviour under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. These results suggest that modification of the Fermi surface by structural distortions is more important than charge doping for inducing superconductivity in BaFe2As2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...