Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Nat Struct Mol Biol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632361

RESUMO

Intermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive. Here we use cryo-focused ion-beam milling, cryo-electron microscopy and tomography to obtain a 3D structure of vimentin IFs (VIFs). VIFs assemble into a modular, intertwined and flexible helical structure of 40 α-helices in cross-section, organized into five protofibrils. Surprisingly, the intrinsically disordered head domains form a fiber in the lumen of VIFs, while the intrinsically disordered tails form lateral connections between the protofibrils. Our findings demonstrate how protein domains of low sequence complexity can complement well-folded protein domains to construct a biopolymer with striking mechanical strength and stretchability.

2.
Cureus ; 15(10): e47723, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021706

RESUMO

Introduction The primary objective of this study was to quantitatively analyze the skeletal and dentoalveolar parameters following the mandibular expansion with a banded appliance. It was also part of the study to evaluate the amount of dental expansion and assess the change in the intermolar and individual first molar angulation. The basal bone parameters were compared to assess the skeletal effect of removable mandibular expansion appliance therapy. Methods In this retrospective cone beam computed tomography (CBCT) study, a total of 80 subjects with mandibular expansion therapy were screened. After imposing inclusion/exclusion criteria, 70 patients (40 females and 30 males) with a mean age of 8.8±1.24 years and 4.79±3.59 months were included. The mean expansion period was 3.04±1.61 months. Skeletal parameters such as buccal cortical thickness, buccal bone width, and cortical density were measured at 2mm from the alveolar crest, mid-root, and apex region in the coronal slice at the level of the mesiobuccal root of the first molar. Expansion parameters such as intermolar width, intermolar angulation, and individual molar angulation were also measured in the same slice. Finally, basal bone parameters such as inter-mental foramina distance and anterior arch perimeter were recorded. Results No significant difference (p>0.05) was found for most skeletal parameters following the expansion, except for the mid-root buccal bone width (p<0.05). On average, 4.54±2.53 mm of dental expansion (p<0.05) was achieved at the first molar region. Individual molar angulation showed a statistically significant difference (right = 7.46±7.91°, left = 7.53±7.18°, p=<0.05). The basal bone parameters showed no significant difference (p>0.05). Conclusions The mandibular expansion device leads to an increase in intermolar distance. The amount of expansion achieved with such devices is due to the buccal tipping of the molars. Skeletal effects such as cortical thickness, buccal bone width, or changes in the basal bone dimensions should not be expected with mandibular expansion therapy.

3.
Synth Biol (Oxf) ; 8(1): ysad005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073283

RESUMO

Computational tools addressing various components of design-build-test-learn (DBTL) loops for the construction of synthetic genetic networks exist but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called Design Assemble Round Trip (DART). DART provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection and reproducible data analysis is provided via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible performance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental conditions. Graphical Abstract.

5.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36301259

RESUMO

In mammalian cell nuclei, the nuclear lamina (NL) underlies the nuclear envelope (NE) to maintain nuclear structure. The nuclear lamins, the major structural components of the NL, are involved in the protection against NE rupture induced by mechanical stress. However, the specific role of the lamins in repair of NE ruptures has not been fully determined. Our analyses using immunofluorescence and live-cell imaging revealed that the nucleoplasmic pool of lamin C rapidly accumulated at sites of NE rupture induced by laser microirradiation in mouse embryonic fibroblasts. The accumulation of lamin C at the rupture sites required both the immunoglobulin-like fold domain that binds to barrier-to-autointegration factor (BAF) and a nuclear localization signal. The accumulation of nuclear BAF and cytoplasmic cyclic GMP-AMP synthase (cGAS) at the rupture sites was in part dependent on lamin A/C. These results suggest that nucleoplasmic lamin C, BAF, and cGAS concertedly accumulate at sites of NE rupture for rapid repair.


Assuntos
Lamina Tipo A , Membrana Nuclear , Animais , Camundongos , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
6.
Synth Biol (Oxf) ; 7(1): ysac018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36285185

RESUMO

We describe an experimental campaign that replicated the performance assessment of logic gates engineered into cells of Saccharomyces cerevisiae by Gander et al. Our experimental campaign used a novel high-throughput experimentation framework developed under Defense Advanced Research Projects Agency's Synergistic Discovery and Design program: a remote robotic lab at Strateos executed a parameterized experimental protocol. Using this protocol and robotic execution, we generated two orders of magnitude more flow cytometry data than the original experiments. We discuss our results, which largely, but not completely, agree with the original report and make some remarks about lessons learned. Graphical Abstract.

7.
Front Cell Dev Biol ; 10: 929495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200046

RESUMO

Vimentin is a Type III intermediate filament (VIF) cytoskeletal protein that regulates the mechanical and migratory behavior of cells. Its expression is considered to be a marker for the epithelial to mesenchymal transition (EMT) that takes place in tumor metastasis. However, the molecular mechanisms regulated by the expression of vimentin in the EMT remain largely unexplored. We created MCF7 epithelial cell lines expressing vimentin from a cumate-inducible promoter to address this question. When vimentin expression was induced in these cells, extensive cytoplasmic VIF networks were assembled accompanied by changes in the organization of the endogenous keratin intermediate filament networks and disruption of desmosomes. Significant reductions in intercellular forces by the cells expressing VIFs were measured by quantitative monolayer traction force and stress microscopy. In contrast, laser trapping micro-rheology revealed that the cytoplasm of MCF7 cells expressing VIFs was stiffer than the uninduced cells. Vimentin expression activated transcription of genes involved in pathways responsible for cell migration and locomotion. Importantly, the EMT related transcription factor TWIST1 was upregulated only in wild type vimentin expressing cells and not in cells expressing a mutant non-polymerized form of vimentin, which only formed unit length filaments (ULF). Taken together, our results suggest that vimentin expression induces a hybrid EMT correlated with the upregulation of genes involved in cell migration.

8.
J Geophys Res Solid Earth ; 127(8): e2022JB024305, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36250160

RESUMO

Understanding the stress evolution of extinct volcanoes can improve efforts to forecast flank eruptions on active systems. Field, petrographic, and seismic data are combined with numerical modeling to investigate the paleo-stress field of New Zealand's Akaroa Volcano, or Akaroa Volcanic Complex. Field mapping identifies 86 radially oriented dikes and seven lava domes found only within a narrow elevation range along Akaroa's erosional crater rim. These observations suggest that crater rim dike emplacement resulted from lateral deflection of vertically ascending intrusions from a centralized magma source, which in turn may have facilitated formation of the lava domes, as well as two scoria cones. We postulate that dike deflection occurred along a stress barrier, as neither a compositional change nor structural boundary are present. We use a finite element model (FEM) simulating Akaroa to test how different factors may have influenced the system's stress state and dike geometry. Elastic, non-flexural ("roller") model configurations containing a large, oblate, and shallow magma chamber produce stress barriers most conducive to radial dike emplacement along Akaroa's crater rim. These configurations also simulate rapid edifice construction above a preexisting lithospheric "bulge." Conversely, simulating flexural stresses exerted on the lithosphere by Akaroa's large mass hinder rather than promote radial dike emplacement. Temperature-dependent viscoelastic relaxation promotes gradual increases in stress barrier elevation, though this effect is strongly dependent on magma chamber parameters. These results suggest that Akaroa was constructed rapidly (within ∼100 kyr) prior to crater rim dike emplacement, which occurred throughout the volcano's remaining active lifespan.

9.
Nucleic Acids Res ; 50(20): e117, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36130229

RESUMO

The chromatin associated with the nuclear lamina (NL) is referred to as lamina-associated domains (LADs). Here, we present an adaptation of the tyramide-signal amplification sequencing (TSA-seq) protocol, which we call chromatin pull down-based TSA-seq (cTSA-seq), that can be used to map chromatin regions at or near the NL from as little as 50 000 cells. The cTSA-seq mapped regions are composed of previously defined LADs and smaller chromatin regions that fall within the Hi-C defined B-compartment containing nuclear peripheral heterochromatin. We used cTSA-seq to map chromatin at or near the assembling NL in cultured cells progressing through early G1. cTSA-seq revealed that the distal ends of chromosomes are near or at the reassembling NL during early G1, a feature similar to those found in senescent cells. We expand the use of cTSA-seq to the mapping of chromatin at or near the NL from fixed-frozen mouse cerebellar tissue sections. This mapping reveals a general conservation of NL-associated chromatin and identifies global and local changes during cerebellar development. The cTSA-seq method reported here is useful for analyzing chromatin at or near the NL from small numbers of cells derived from both in vitro and in vivo sources.


Assuntos
Cromatina , Mapeamento Cromossômico , Lâmina Nuclear , Análise de Sequência de DNA , Animais , Camundongos , Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Heterocromatina/metabolismo , Lâmina Nuclear/metabolismo , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico/métodos
10.
Mol Biol Cell ; 33(13): ar121, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001365

RESUMO

Keratin intermediate filaments convey mechanical stability and protection against stress to epithelial cells. Keratins are essential for colon health, as seen in keratin 8 knockout (K8-/-) mice exhibiting a colitis phenotype. We hypothesized that keratins support the nuclear envelope and lamina in colonocytes. K8-/- colonocytes in vivo exhibit significantly decreased levels of lamins A/C, B1, and B2 in a colon-specific and cell-intrinsic manner. CRISPR/Cas9- or siRNA-mediated K8 knockdown in Caco-2 cells similarly decreased lamin levels, which recovered after reexpression of K8 following siRNA treatment. Nuclear area was not decreased, and roundness was only marginally increased in cells without K8. Down-regulation of K8 in adult K8flox/flox;Villin-CreERt2 mice following tamoxifen administration significantly decreased lamin levels at day 4 when K8 levels had reduced to 40%. K8 loss also led to reduced levels of plectin, LINC complex, and lamin-associated proteins. While keratins were not seen in the nucleoplasm without or with leptomycin B treatment, keratins were found intimately located at the nuclear envelope and complexed with SUN2 and lamin A. Furthermore, K8 loss in Caco-2 cells compromised nuclear membrane integrity basally and after shear stress. In conclusion, colonocyte K8 helps maintain nuclear envelope and lamina composition and contributes to nuclear integrity.


Assuntos
Queratina-8 , Queratinas , Animais , Células CACO-2 , Colo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Humanos , Queratina-8/genética , Queratinas/metabolismo , Lamina Tipo A/metabolismo , Camundongos , Membrana Nuclear/metabolismo , Plectina/metabolismo , RNA Interferente Pequeno/metabolismo , Tamoxifeno
11.
Arterioscler Thromb Vasc Biol ; 42(6): 732-742, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35443793

RESUMO

OBJECTIVE: Failure to close the ductus arteriosus, patent ductus arteriosus, accounts for 10% of all congenital heart defects. Despite significant advances in patent ductus arteriosus management, including pharmacological treatment targeting the prostaglandin pathway, a proportion of patients fail to respond and must undergo surgical intervention. Thus, further refinement of the cellular and molecular mechanisms that govern vascular remodeling of this vessel is required. METHODS: We performed single-cell RNA-sequencing of the ductus arteriosus in mouse embryos at E18.5 (embryonic day 18.5), and P0.5 (postnatal day 0.5), and P5 to identify transcriptional alterations that might be associated with remodeling. We further confirmed our findings using transgenic mouse models coupled with immunohistochemistry analysis. RESULTS: The intermediate filament vimentin emerged as a candidate that might contribute to closure of the ductus arteriosus. Indeed, mice with genetic deletion of vimentin fail to complete vascular remodeling of the ductus arteriosus. To seek mechanisms, we turned to the RNA-sequencing data that indicated changes in Jagged1 with similar profile to vimentin and pointed to potential links with Notch. In fact, Notch3 signaling was impaired in vimentin null mice and vimentin null mice phenocopies patent ductus arteriosus in Jagged1 endothelial and smooth muscle deleted mice. CONCLUSIONS: Through single-cell RNA-sequencing and by tracking closure of the ductus arteriosus in mice, we uncovered the unexpected contribution of vimentin in driving complete closure of the ductus arteriosus through a mechanism that includes deregulation of the Notch signaling pathway.


Assuntos
Permeabilidade do Canal Arterial , Canal Arterial , Animais , Canal Arterial/metabolismo , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Camundongos , RNA , Remodelação Vascular , Vimentina/genética , Vimentina/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(17): e2121816119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439057

RESUMO

The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin­LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.


Assuntos
Fibroblastos , Lâmina Nuclear , Animais , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Camundongos , Lâmina Nuclear/metabolismo , Matriz Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
13.
Genes Dev ; 36(7-8): 391-407, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487686

RESUMO

More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.


Assuntos
Filamentos Intermediários , Vimentina/metabolismo , Animais , Fenômenos Fisiológicos Celulares , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Camundongos , Vimentina/genética
15.
Int Clin Psychopharmacol ; 37(5): 215-222, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276716

RESUMO

The objective of this study is to confirm the efficacy and safety of lurasidone in the acute treatment of schizophrenia in European patients. Data were pooled from three studies of patients randomized to 6 weeks of double-blind, placebo-controlled, fixed-dose (40/80 mg and 120/160 mg) lurasidone. The primary efficacy endpoint was a week 6 change in the Positive and Negative Syndrome Scale (PANSS) total score and secondary endpoints included the Clinical Global Impression, Severity scale (CGI-S). In total 328 safety patients were enrolled; 72.6% were completers. Endpoint change was significantly greater in patients treated with 40-80 mg/d and 120-160 mg/d compared to placebo on the PANSS total score ( P < 0.001) and the CGI-Severity score ( P < 0.001) for all comparisons. For PANSS total scores, endpoint effect sizes for lurasidone 40-80 mg/d and 120-160 mg/d were 0.68 to 0.77, respectively. Adverse events with a frequency ≥5% (and were greater than for combined lurasidone) were insomnia (11.7%), akathisia (11.3%), headache (7.4%), Parkinsonism (6.5%) and nausea (5.7%). Median changes (in mg/dL) at endpoint were minimal for total cholesterol (-8.0); triglycerides (-8.5) and glucose (-2.0) and in mean weight (-0.2 kg). In European patients with schizophrenia, short-term treatment with lurasidone in doses of 40-160 mg/d was generally safe, well-tolerated and effective with minimal effects on weight and metabolic parameters.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/efeitos adversos , Método Duplo-Cego , Humanos , Cloridrato de Lurasidona/efeitos adversos , Esquizofrenia/diagnóstico , Esquizofrenia/tratamento farmacológico , Resultado do Tratamento
16.
Proc Natl Acad Sci U S A ; 119(10): e2115217119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235449

RESUMO

The cytoskeleton of eukaryotic cells is primarily composed of networks of filamentous proteins, F-actin, microtubules, and intermediate filaments. Interactions among the cytoskeletal components are important in determining cell structure and in regulating cell functions. For example, F-actin and microtubules work together to control cell shape and polarity, while the subcellular organization and transport of vimentin intermediate filament (VIF) networks depend on their interactions with microtubules. However, it is generally thought that F-actin and VIFs form two coexisting but separate networks that are independent due to observed differences in their spatial distribution and functions. In this paper, we present a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks. We characterize the structure of VIFs and F-actin networks within the cell cortex using structured illumination microscopy and cryo-electron tomography. We find that VIFs and F-actin form an interpenetrating network (IPN) with interactions at multiple length scales, and VIFs are integral components of F-actin stress fibers. From measurements of recovery of cell contractility after transient stretching, we find that the IPN structure results in enhanced contractile forces and contributes to cell resilience. Studies of reconstituted networks and dynamic measurements in cells suggest direct and specific associations between VIFs and F-actin. From these results, we conclude that VIFs and F-actin work synergistically, both in their structure and in their function. These results profoundly alter our understanding of the contributions of the components of the cytoskeleton, particularly the interactions between intermediate filaments and F-actin.


Assuntos
Citoplasma/metabolismo , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Biopolímeros/metabolismo , Células Cultivadas , Tomografia com Microscopia Eletrônica/métodos , Filamentos Intermediários/química , Camundongos , Vimentina/química
17.
APL Bioeng ; 6(1): 011503, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146235

RESUMO

Nuclear lamins are type V intermediate filament proteins that polymerize into complex filamentous meshworks at the nuclear periphery and in less structured forms throughout the nucleoplasm. Lamins interact with a wide range of nuclear proteins and are involved in numerous nuclear and cellular functions. Within the nucleus, they play roles in chromatin organization and gene regulation, nuclear shape, size, and mechanics, and the organization and anchorage of nuclear pore complexes. At the whole cell level, they are involved in the organization of the cytoskeleton, cell motility, and mechanotransduction. The expression of different lamin isoforms has been associated with developmental progression, differentiation, and tissue-specific functions. Mutations in lamins and their binding proteins result in over 15 distinct human diseases, referred to as laminopathies. The laminopathies include muscular (e.g., Emery-Dreifuss muscular dystrophy and dilated cardiomyopathy), neurological (e.g., microcephaly), and metabolic (e.g., familial partial lipodystrophy) disorders as well as premature aging diseases (e.g., Hutchinson-Gilford Progeria and Werner syndromes). How lamins contribute to the etiology of laminopathies is still unknown. In this review article, we summarize major recent findings on the structure, organization, and multiple functions of lamins in nuclear and more global cellular processes.

18.
ACS Synth Biol ; 11(2): 608-622, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35099189

RESUMO

Synthetic biology is a complex discipline that involves creating detailed, purpose-built designs from genetic parts. This process is often phrased as a Design-Build-Test-Learn loop, where iterative design improvements can be made, implemented, measured, and analyzed. Automation can potentially improve both the end-to-end duration of the process and the utility of data produced by the process. One of the most important considerations for the development of effective automation and quality data is a rigorous description of implicit knowledge encoded as a formal knowledge representation. The development of knowledge representation for the process poses a number of challenges, including developing effective human-machine interfaces, protecting against and repairing user error, providing flexibility for terminological mismatches, and supporting extensibility to new experimental types. We address these challenges with the DARPA SD2 Round Trip software architecture. The Round Trip is an open architecture that automates many of the key steps in the Test and Learn phases of a Design-Build-Test-Learn loop for high-throughput laboratory science. The primary contribution of the Round Trip is to assist with and otherwise automate metadata creation, curation, standardization, and linkage with experimental data. The Round Trip's focus on metadata supports fast, automated, and replicable analysis of experiments as well as experimental situational awareness and experimental interpretability. We highlight the major software components and data representations that enable the Round Trip to speed up the design and analysis of experiments by 2 orders of magnitude over prior ad hoc methods. These contributions support a number of experimental protocols and experimental types, demonstrating the Round Trip's breadth and extensibility. We describe both an illustrative use case using the Round Trip for an on-the-loop experimental campaign and overall contributions to reducing experimental analysis time and increasing data product volume in the SD2 program.


Assuntos
Projetos de Pesquisa , Software , Automação/métodos , Humanos , Padrões de Referência , Biologia Sintética/métodos
19.
Schizophr Res ; 240: 205-213, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032906

RESUMO

BACKGROUND: There is a relative lack of long-term, prospective data evaluating the safety and effectiveness of treatment in early-onset adolescent patients with schizophrenia who are treatment-naïve. The aim of this post-hoc analysis was to examine the long-term safety and effectiveness of lurasidone in adolescents with schizophrenia who were antipsychotic treatment-naïve (TN; at the time of enrolment in the initial study) compared to adolescents treated previously (TP) with an antipsychotic. METHODS: Patients aged 13-17 who completed 6 weeks of double-blind (DB), placebo-controlled treatment with lurasidone were enrolled in a 2-year, open-label (OL), flexible-dose (20-80 mg/day) lurasidone study. RESULTS: The long-term analysis sample consisted of 50 TN and 221 TP patients, of whom 40% and 43%, respectively, discontinued prematurely. The three most common adverse events for TN and TP patients, respectively, were headache (26.0%, 23.5%); schizophrenia (14.0%, 12.2%), dizziness (16.0%, 4.1%), and nausea (16.0%, 11.8%). At endpoint, mean increase in weight was similar to expected weight gain based on growth charts for both TN (+4.5 kg vs. + 5.7 kg) and TP (+4.6 kg vs. + 6.6 kg) patients. Minimal changes were observed for each group in metabolic parameters and prolactin. Mean improvement was consistently greater in the TN vs. TP group (-19.2 vs. -15.9; effect size of 0.33) for between-group change in PANSS total score at Week 104. CONCLUSIONS: In both TN and TP adolescents with schizophrenia, long-term treatment with lurasidone was associated with minimal effects on body weight, lipids, glycemic indices, and prolactin, with generally small differences noted in rates of reported AEs. Continued improvement in symptoms of schizophrenia was evident for both the TN and TP groups. These data indicate that lurasidone is a safe and efficacious treatment option for treatment-naïve youth with schizophrenia, who are generally most sensitive to antipsychotic adverse effects.


Assuntos
Antipsicóticos , Esquizofrenia , Adolescente , Antipsicóticos/efeitos adversos , Método Duplo-Cego , Humanos , Cloridrato de Lurasidona/efeitos adversos , Estudos Prospectivos , Esquizofrenia/complicações , Resultado do Tratamento
20.
J Atten Disord ; 26(10): 1357-1368, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35048745

RESUMO

OBJECTIVE: To evaluate the efficacy of dasotraline 2 mg/day for treatment of ADHD in children weighing ≤30 kg. METHOD: Children (ages 6-12) with ADHD were randomized to 14 days of once-daily evening doses of dasotraline 2 mg (n = 47) or placebo (n = 48). Efficacy was assessed at Baseline and day-15 in seven, 30-minutes classroom sessions on each day (8:00 a.m. to 8:00 p.m.; 12-24 hours post-dose). The primary endpoint was change from Baseline at Day-15 in the Swanson, Kotkin, Agler, M-Flynn, and Pelham (SKAMP) combined score averaged over the seven, serial timepoints. RESULTS: Treatment with dasotraline was associated with significant improvement versus placebo in the primary SKAMP-combined score (least squares mean [SE] change from Baseline at Day-15: -3.67 [0.775] vs. +1.57 [0.773]; p < .001; effect size, 1.04). CONCLUSION: Dasotraline 2 mg/day was found to be efficacious and generally well tolerated in this placebo-controlled, laboratory classroom study of children ages 6 to 12 years with ADHD. CLINICALTRIALS.GOV IDENTIFIER: NCT03231800.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , 1-Naftilamina/análogos & derivados , 1-Naftilamina/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Criança , Preparações de Ação Retardada/uso terapêutico , Relação Dose-Resposta a Droga , Método Duplo-Cego , Humanos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...