Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 21(7): 824-834, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235934

RESUMO

How pluripotent stem cells differentiate into the main germ layers is a key question of developmental biology. Here, we show that the chromatin-related factor Whsc1 (also known as Nsd2 and MMSET) has a dual role in pluripotency exit and germ layer specification of embryonic stem cells. On induction of differentiation, a proportion of Whsc1-depleted embryonic stem cells remain entrapped in a pluripotent state and fail to form mesendoderm, although they are still capable of generating neuroectoderm. These functions of Whsc1 are independent of its methyltransferase activity. Whsc1 binds to enhancers of the mesendodermal regulators Gata4, T (Brachyury), Gata6 and Foxa2, together with Brd4, and activates the expression of these genes. Depleting each of these regulators also delays pluripotency exit, suggesting that they mediate the effects observed with Whsc1. Our data indicate that Whsc1 links silencing of the pluripotency regulatory network with activation of mesendoderm lineages.


Assuntos
Diferenciação Celular/fisiologia , Endoderma/citologia , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/genética , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Camadas Germinativas/citologia , Camundongos , Placa Neural/citologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
2.
Life Sci Alliance ; 1(4): e201800094, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30456368

RESUMO

Phelan-McDermid syndrome (also known as 22q13.3 deletion syndrome) is a syndromic form of autism spectrum disorder and currently thought to be caused by heterozygous loss of SHANK3. However, patients most frequently present with large chromosomal deletions affecting several additional genes. We used human pluripotent stem cell technology and genome editing to further dissect molecular and cellular mechanisms. We found that loss of JIP2 (MAPK8IP2) may contribute to a distinct neurodevelopmental phenotype in neural progenitor cells (NPCs) affecting neuronal maturation. This is most likely due to a simultaneous down-regulation of c-Jun N-terminal kinase (JNK) proteins, leading to impaired generation of mature neurons. Furthermore, semaphorin signaling appears to be impaired in patient NPCs and neurons. Pharmacological activation of neuropilin receptor 1 (NRP1) rescued impaired semaphorin pathway activity and JNK expression in patient neurons. Our results suggest a novel disease-specific mechanism involving the JIP/JNK complex and identify NRP1 as a potential new therapeutic target.

3.
Nat Commun ; 8(1): 1096, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061959

RESUMO

Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression dynamics of retinoic acid driven mESC differentiation from pluripotency to lineage commitment, using an unbiased single-cell transcriptomics approach. We find that the exit from pluripotency marks the start of a lineage transition as well as a transient phase of increased susceptibility to lineage specifying signals. Our study reveals several transcriptional signatures of this phase, including a sharp increase of gene expression variability and sequential expression of two classes of transcriptional regulators. In summary, we provide a comprehensive analysis of the exit from pluripotency and lineage commitment at the single cell level, a potential stepping stone to improved lineage manipulation through timing of differentiation cues.


Assuntos
Células-Tronco Embrionárias/citologia , Análise de Célula Única , Transcriptoma , Animais , Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas/genética , Proteínas/metabolismo
4.
Nat Genet ; 48(10): 1253-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548314

RESUMO

RNA polymerase II mediates the transcription of all protein-coding genes in eukaryotic cells, a process that is fundamental to life. Genomic mutations altering this enzyme have not previously been linked to any pathology in humans, which is a testament to its indispensable role in cell biology. On the basis of a combination of next-generation genomic analyses of 775 meningiomas, we report that recurrent somatic p.Gln403Lys or p.Leu438_His439del mutations in POLR2A, which encodes the catalytic subunit of RNA polymerase II (ref. 1), hijack this essential enzyme and drive neoplasia. POLR2A mutant tumors show dysregulation of key meningeal identity genes, including WNT6 and ZIC1/ZIC4. In addition to mutations in POLR2A, NF2, SMARCB1, TRAF7, KLF4, AKT1, PIK3CA, and SMO, we also report somatic mutations in AKT3, PIK3R1, PRKAR1A, and SUFU in meningiomas. Our results identify a role for essential transcriptional machinery in driving tumorigenesis and define mutually exclusive meningioma subgroups with distinct clinical and pathological features.


Assuntos
Neoplasias Meníngeas/genética , Meningioma/genética , Mutação , RNA Polimerase II/genética , Domínio Catalítico/genética , Cromossomos Humanos Par 22 , Estudos de Coortes , Análise Mutacional de DNA , Elementos Facilitadores Genéticos , Exoma , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Meníngeas/classificação , Meningioma/classificação , Neurofibromina 2/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética
5.
Nature ; 533(7601): 95-9, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27096366

RESUMO

Genome-wide association studies (GWAS) have identified numerous genetic variants associated with complex diseases, but mechanistic insights are impeded by a lack of understanding of how specific risk variants functionally contribute to the underlying pathogenesis. It has been proposed that cis-acting effects of non-coding risk variants on gene expression are a major factor for phenotypic variation of complex traits and disease susceptibility. Recent genome-scale epigenetic studies have highlighted the enrichment of GWAS-identified variants in regulatory DNA elements of disease-relevant cell types. Furthermore, single nucleotide polymorphism (SNP)-specific changes in transcription factor binding are correlated with heritable alterations in chromatin state and considered a major mediator of sequence-dependent regulation of gene expression. Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells. By generating a genetically precisely controlled experimental system, we identify a common Parkinson's disease associated risk variant in a non-coding distal enhancer element that regulates the expression of α-synuclein (SNCA), a key gene implicated in the pathogenesis of Parkinson's disease. Our data suggest that the transcriptional deregulation of SNCA is associated with sequence-dependent binding of the brain-specific transcription factors EMX2 and NKX6-1. This work establishes an experimental paradigm to functionally connect genetic variation with disease-relevant phenotypes.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Alelos , Encéfalo/metabolismo , Sistemas CRISPR-Cas/genética , Epigênese Genética/genética , Engenharia Genética , Genoma Humano/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Modelos Genéticos , Células-Tronco Pluripotentes/metabolismo , Risco , Fatores de Transcrição/metabolismo
6.
Science ; 351(6280): 1454-1458, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26940867

RESUMO

Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.


Assuntos
Aberrações Cromossômicas , Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proto-Oncogenes/genética , Deleção de Sequência , Translocação Genética , Mapeamento Cromossômico , Células HEK293 , Humanos , Mutação , Ativação Transcricional
7.
Proc Natl Acad Sci U S A ; 113(6): 1570-5, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26811475

RESUMO

The neural crest (NC) represents multipotent cells that arise at the interphase between ectoderm and prospective epidermis of the neurulating embryo. The NC has major clinical relevance because it is involved in both inherited and acquired developmental abnormalities. The aim of this study was to establish an experimental platform that would allow for the integration of human NC cells (hNCCs) into the gastrulating mouse embryo. NCCs were derived from pluripotent mouse, rat, and human cells and microinjected into embryonic-day-8.5 embryos. To facilitate integration of the NCCs, we used recipient embryos that carried a c-Kit mutation (W(sh)/W(sh)), which leads to a loss of melanoblasts and thus eliminates competition from the endogenous host cells. The donor NCCs migrated along the dorsolateral migration routes in the recipient embryos. Postnatal mice derived from injected embryos displayed pigmented hair, demonstrating differentiation of the NCCs into functional melanocytes. Although the contribution of human cells to pigmentation in the host was lower than that of mouse or rat donor cells, our results indicate that hNCCs, injected in utero, can integrate into the embryo and form mature functional cells in the animal. This mouse-human chimeric platform allows for a new approach to study NC development and diseases.


Assuntos
Quimera/metabolismo , Embrião de Mamíferos/citologia , Crista Neural/citologia , Pigmentação da Pele , Negro ou Afro-Americano , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Células Cultivadas , DNA/metabolismo , Fibroblastos/citologia , Gastrulação , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos Endogâmicos C57BL , Microinjeções , Reação em Cadeia da Polimerase , Ratos , Especificidade da Espécie , Doadores de Tecidos
8.
Hum Gene Ther ; 26(11): 751-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26381596

RESUMO

mRNA reprogramming results in the generation of genetically stable induced pluripotent stem (iPS) cells while avoiding the risks of genomic integration. Previously published mRNA reprogramming protocols have proven to be inconsistent and time-consuming and mainly restricted to fibroblasts, thereby demonstrating the need for a simple but reproducible protocol applicable to various cell types. So far there have been no published reports using mRNA to reprogram any cell type derived from human blood. Nonmodified synthetic mRNAs are immunogenic and activate cellular defense mechanisms, which can lead to cell death and inhibit mRNA translation upon repetitive transfection. Hence, to overcome RNA-related toxicity we combined nonmodified reprogramming mRNAs (OCT4, SOX2, KLF4, cMYC, NANOG, and LIN28 [OSKMNL]) with immune evasion mRNAs (E3, K3, and B18R [EKB]) from vaccinia virus. Additionally, we included mature, double-stranded microRNAs (miRNAs) from the 302/367 cluster, which are known to enhance the reprogramming process, to develop a robust reprogramming protocol for the generation of stable iPS cell lines from both human fibroblasts and human blood-outgrowth endothelial progenitor cells (EPCs). Our novel combination of RNAs enables the cell to tolerate repetitive transfections for the generation of stable iPS cell colonies from human fibroblasts within 11 days while requiring only four transfections. Moreover, our method resulted in the first known mRNA-vectored reprogramming of human blood-derived EPCs within 10 days while requiring only eight daily transfections.


Assuntos
Técnicas de Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Mensageiro/genética , Transfecção , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Evasão da Resposta Imune , Fator 4 Semelhante a Kruppel , MicroRNAs/genética , RNA Mensageiro/imunologia , Vaccinia virus/genética
9.
Cell Stem Cell ; 15(3): 295-309, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25192464

RESUMO

Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliably high-quality iPSCs will be needed for future therapeutic applications. Here, we show that one major determinant of iPSC quality is the combination of reprogramming factors used. Based on tetraploid complementation, we found that ectopic expression of Sall4, Nanog, Esrrb, and Lin28 (SNEL) in mouse embryonic fibroblasts (MEFs) generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. Although differentially methylated regions, transcript number of master regulators, establishment of specific superenhancers, and global aneuploidy were comparable between high- and low-quality lines, aberrant gene expression, trisomy of chromosome 8, and abnormal H2A.X deposition were distinguishing features that could potentially also be applicable to human.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Quimera , Cromossomos Humanos Par 8/genética , Metilação de DNA/genética , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Perfilação da Expressão Gênica , Genoma/genética , Histonas/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trissomia/genética
10.
Nat Methods ; 8(4): 315-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21378979

RESUMO

Pluripotent stem cells (PSCs) are defined by their potential to generate all cell types of an organism. The standard assay for pluripotency of mouse PSCs is cell transmission through the germline, but for human PSCs researchers depend on indirect methods such as differentiation into teratomas in immunodeficient mice. Here we report PluriTest, a robust open-access bioinformatic assay of pluripotency in human cells based on their gene expression profiles.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes/fisiologia , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Modelos Genéticos , Neurônios , Análise de Sequência com Séries de Oligonucleotídeos , Software
11.
Cell Stem Cell ; 6(5): 412-4, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20452314

RESUMO

The teratoma assay is the gold standard for documenting pluripotency of human stem cells. However, reports of new human ESC and iPSC lines vary widely in both methods and analysis of teratoma data. We call for consensus standards to be established to make this assay worthy of its "golden" status.


Assuntos
Bioensaio/métodos , Bioensaio/normas , Células-Tronco Pluripotentes/citologia , Teratoma/patologia , Animais , Linhagem Celular , Consenso , Humanos , Metanálise como Assunto , Camundongos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...