Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Nat Commun ; 15(1): 1818, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443394

RESUMO

Control of CRISPR/Cas12a trans-cleavage is crucial for biosensor development. Here, we show that small circular DNA nanostructures which partially match guide RNA sequences only minimally activate Cas12a ribonucleoproteins. However, linearizing these structures restores activation. Building on this finding, an Autocatalytic Cas12a Circular DNA Amplification Reaction (AutoCAR) system is established which allows a single nucleic acid target to activate multiple ribonucleoproteins, and greatly increases the achievable reporter cleavage rates per target. A rate-equation-based model explains the observed near-exponential rate trends. Autocatalysis is also sustained with DNA nanostructures modified with fluorophore-quencher pairs achieving 1 aM level (<1 copy/µL) DNA detection (106 times improvement), without additional amplification, within 15 min, at room temperature. The detection range is tuneable, spanning 3 to 11 orders of magnitude. We demonstrate 1 aM level detection of SNP mutations in circulating tumor DNA from blood plasma, genomic DNA (H. Pylori) and RNA (SARS-CoV-2) without reverse transcription as well as colorimetric lateral flow tests of cancer mutations with ~100 aM sensitivity.


Assuntos
Helicobacter pylori , Nanoestruturas , DNA Circular/genética , RNA/genética , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , DNA/genética , Ribonucleoproteínas
2.
J Mater Chem B ; 12(15): 3764-3773, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38533806

RESUMO

In this study, we utilized X-ray-induced photodynamic therapy (X-PDT) against triple-negative breast cancer (TNBC) cells. To achieve this, we developed a liposome delivery system that co-loaded protoporphyrin IX (PPIX) and perfluorooctyl bromide (PFOB) in a rational manner. Low-dose X-ray at 2 Gy was employed to activate PPIX for the generation of reactive oxygen species (ROS), and the co-loading of PFOB provided additional oxygen to enhance ROS production. The resulting highly toxic ROS effectively induced cell death in TNBC. In vitro X-PDT effects, including intracellular ROS generation, cell viability, and apoptosis/necrosis assays in TNBC cells, were thoroughly investigated. Our results indicate that the nanocarriers effectively induced X-PDT effects with very low-dose radiation, making it feasible to damage cancer cells. This suggests the potential for the effective utilization of X-PDT in treating hypoxic cancers, including TNBC, with only a fraction of conventional radiotherapy.


Assuntos
Fluorocarbonos , Hidrocarbonetos Bromados , Fotoquimioterapia , Protoporfirinas , Neoplasias de Mama Triplo Negativas , Humanos , Fotoquimioterapia/métodos , Lipossomos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
3.
Am J Physiol Endocrinol Metab ; 326(3): E366-E381, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197792

RESUMO

Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during mouse oocyte maturation in vitro altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, whereas mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content while maintaining ATP homeostasis. Collectively, these data demonstrate that cumulin and BMP15 remodel cumulus cell metabolism, instructing them to upregulate their anabolic metabolic processes, while routine cellular functions are minimized in the oocyte during maturation, in preparation for ensuing embryonic development.NEW & NOTEWORTHY Oocyte-secreted factors (OSFs) promote oocyte and cumulus cell cooperativity by altering the molecular composition of both cell types. OSFs downregulate protein catabolic processes and upregulate processes associated with DNA binding, translation, and ribosome assembly in oocytes. In cumulus cells, OSFs alter mitochondrial number, morphology, and function, and enhance metabolic plasticity by upregulating anabolic pathways. Hence, the oocyte via OSFs, instructs cumulus cells to increase metabolic processes on its behalf, thereby subduing oocyte metabolism.


Assuntos
Células do Cúmulo , Proteômica , Gravidez , Feminino , Animais , Camundongos , Células do Cúmulo/metabolismo , Oócitos/metabolismo , Comunicação Celular , Desenvolvimento Embrionário , Técnicas de Maturação in Vitro de Oócitos , Mamíferos
4.
J Biophotonics ; 17(4): e202300402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247053

RESUMO

This study focuses on the use of cellular autofluorescence which visualizes the cell metabolism by monitoring endogenous fluorophores including NAD(P)H and flavins. It explores the potential of multispectral imaging of native fluorophores in melanoma diagnostics using excitation wavelengths ranging from 340 nm to 510 nm and emission wavelengths above 391 nm. Cultured immortalized cells are utilized to compare the autofluorescent signatures of two melanoma cell lines to one fibroblast cell line. Feature analysis identifies the most significant and least correlated features for differentiating the cells. The investigation successfully applies this analysis to pre-processed, noise-removed images and original background-corrupted data. Furthermore, the applicability of distinguishing melanomas and healthy fibroblasts based on their autofluorescent characteristics is validated using the same evaluation technique on patient cells. Additionally, the study tentatively maps the detected features to underlying biological processes. This research demonstrates the potential of cellular autofluorescence as a promising tool for melanoma diagnostics.


Assuntos
Melanoma , Humanos , Melanoma/diagnóstico por imagem , Linhagem Celular , Diagnóstico por Imagem , NAD , Corantes Fluorescentes
5.
Artigo em Inglês | MEDLINE | ID: mdl-38082853

RESUMO

Point-of-care testing (POCT) can be performed near the site of the patient to achieve results in a few minutes. Different POCT devices are available in the market, such as microfluidic chips and paper-based lateral flow assays (LFAs). The paper-based LFAs have certain advantages, such as being cheap and disposable, able to detect a wide range of biomolecules, and the fluid flows through them via capillary action eliminating the need for external forces. The LFAs can be optimized for the sensitive and rapid detection of biomolecules. In this study, paper-based fluorescent LFAs platforms using aptamers as the biorecognition molecules were developed for the POCT of insulin. Various parameters were optimized such as concentrations of aptamers, the type of reporter molecules, the volume of sample, and the assay time to quantify insulin levels using a standard LFA reader. The fluorescent LFAs exhibited a linear detection range of 0.1-4 ng.mL-1 with a limit of detection (LOD) 0.1 ng.mL-1. The developed LFAs will help to achieve insulin measurement in a few minutes and will be easy to perform by end-users without the requirement of sophisticated instruments, laboratory set-up, and trained personnel. The developed device will be useful for the measurement of insulin levels in biological samples without the need for pretreatment, reducing the overall cost and time of testing. Moreover, the POCT device were fabricated using paper which is a low-cost (approximately AUD 2 per strip) option and is disposable.Clinical Relevance- POCT monitoring of insulin can facilitate both disease diagnosis and management. The developed LFAs have the capability of rapidly testing insulin concentration within several minutes. It will benefit both patients for at-home daily insulin monitoring and clinicians for hospital rapid insulin testing.


Assuntos
Insulina , Testes Imediatos , Humanos , Limite de Detecção
6.
ACS Mater Au ; 3(6): 600-619, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38089666

RESUMO

Over the past decade, the therapeutic potential of nanomaterials as novel drug delivery systems complementing conventional pharmacology has been widely acknowledged. Among these nanomaterials, lipid-based nanoparticles (LNPs) have shown remarkable pharmacological performance and promising therapeutic outcomes, thus gaining substantial interest in preclinical and clinical research. In this review, we introduce the main types of LNPs used in drug formulations such as liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, and lipid polymer hybrid nanoparticles, focusing on their main physicochemical properties and therapeutic potential. We discuss computational studies and modeling techniques to enhance the understanding of how LNPs interact with therapeutic cargo and to predict the potential effectiveness of such interactions in therapeutic applications. We also analyze the benefits and drawbacks of various LNP production techniques such as nanoprecipitation, emulsification, evaporation, thin film hydration, microfluidic-based methods, and an impingement jet mixer. Additionally, we discuss the major challenges associated with industrial development, including stability and sterilization, storage, regulatory compliance, reproducibility, and quality control. Overcoming these challenges and facilitating regulatory compliance represent the key steps toward LNP's successful commercialization and translation into clinical settings.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38082598

RESUMO

Neurofilament light chain (NF-L) is a protein found in neurons of the nervous system and is widely used as a biomarker for neurological disorders. However, the current methods for detecting NF-L levels are complicated, expensive, and require specialized equipment, making it challenging to implement in a point-of-care (POC) setting. In this study, we developed a gold nanoshell (AuNS)-assisted lateral flow assay (LFA) based test strip for the POC detection of NF-L at a low ng/mL level (8 ng/mL = 117.65 pM). The test strip is a simple, rapid, and cost-effective method for detecting NF-L, making it suitable for use in a POC setting for the diagnosis and treatment of various neurological disorders. With its ease of use and reliability, the paper-based LFA is a valuable tool for the diagnosis and management of neurological conditions.Clinical Relevance- The AuNS-assisted LFA test strip developed in this study offers a rapid, cost-effective, and simple method for detecting NF-L levels, making it of great interest to practicing clinicians for the diagnosis of various neurological diseases such as HIV-associated dementia (HID), Amyotrophic Lateral Sclerosis (ALS), and Creutzfeldt-Jakob disease (CJD).


Assuntos
Esclerose Lateral Amiotrófica , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Filamentos Intermediários/metabolismo , Reprodutibilidade dos Testes , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores
8.
Artigo em Inglês | MEDLINE | ID: mdl-38083573

RESUMO

CRISPR/Cas biotechnology provides an exceptional platform for biosensor development. To date, the reported CRISPR/Cas biosensing systems have shown extraordinary performance for nucleic acids, small molecules, small proteins and microorganism detection. The CRISPR/Cas12a biosensing system, as a typical example, has been well established and applied for both nucleic acids and non-nucleic acids target detection. However, all established CRISPR/Cas12a biosensing systems are based on DNA reporters, which potentially limits further application.In this study, we established an RNA reporter based CRISPR/Cas12a biosensing system. A basic biosensing system was evaluated, and the limit of detection was found to be 1 nM. Afterwards, we optimized this biosensing system using both temperature and chemical enhancers. The final optimal biosensing system (with DTT & 37°C) shows fluorescence signal increased by a factor of ~10 compared with the basic system. The optimal biosensing system was further applied for the detection of circulating tumor DNA (ctDNA), which shows over 4 orders of magnitude detection range from 1pM to 25 nM, with the limit of detection of 1pM. This RNA reporter based CRISPR/Cas12a biosensing system provides an effective platform for nucleic acids quantification.Clinical Relevance- This research provides a novel approach for ctDNA diagnostics, which is an attractive biomarker for noninvasive monitoring of tumor growth, response, and spread.


Assuntos
DNA Tumoral Circulante , Ácidos Nucleicos , RNA , Sistemas CRISPR-Cas , Fluorescência
9.
Artigo em Inglês | MEDLINE | ID: mdl-38083710

RESUMO

The rapidly advanced CRISPR/Cas biosensing technology provides unprecedent potential for the development of novel biosensing systems. It provides a new approach for realizing rapid, sensitivity and highly specific pathogen nucleic acid detection, with the capability to combine other technologies, including Polymerase Chain Reaction or isothermal amplifications. The detection of Helicobacter pylori (H. pylori), one of the most common human pathogens to cause various gastroduodenal diseases, has also been explored with the assistance of CRISPR/Cas systems. However, gaps still remain for the development of end-user friendly sensing systems.In this study, a combined RPA-CRISPR/Cas12a biosensing system has been established. It shown the capability to quantitively detect the presence of H. pylori genome DNA with 4 orders of magnitude linear range, and sensitivity of 1.4 copies/µL. The overall reaction can be done within 45 mins at room temperature, which eliminates the needs for heating instrumentation. In addition, with the addition of pullulan as a protective reagent, the potential of storing CRISPR/Cas12a system reagents by using a freeze-dry approach has also been demonstrated.Clinical Relevance - This study represents a novel exploration to applying CRISPR/Cas12a-based biosensing technology to the detection of pathogen DNA with improved potential for the development of Point-of-Care diagnostics. This critical aspect of our technology will contribute to address the newly emerged pathogenic threats and support public health systems.


Assuntos
Helicobacter pylori , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Helicobacter pylori/genética , Sistemas CRISPR-Cas , Calefação , DNA
10.
Opt Express ; 31(22): 37030-37039, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017840

RESUMO

One of the most significant problems the Australian sheep and lamb industry faces today is grass seed infestation (GSI), which occurs when seeds accumulate in the sheep's fleece and penetrate the skin, causing infection. Meat & Livestock Australia estimates that the yearly losses caused due to GSI are around AUD$47.5 M (in Australia alone). Here, we demonstrate that terahertz spectroscopy and imaging can be utilized for early detection of GSI. This is possible because terahertz waves can penetrate through sheep wool and have the appropriate wavelength for identifying the seed. Moreover, terahertz waves have non-invasive and non-ionizing properties and are ideal for non-contact and standoff detection. This work demonstrates that terahertz waves can be utilized for the early detection of seeds in the animal fleece or on the pelt as a precursor tool for the prevention of GSI.


Assuntos
Poaceae , Pele , Animais , Ovinos , Austrália , , Carne
11.
Cells ; 12(18)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759524

RESUMO

Islets prepared for transplantation into type 1 diabetes patients are exposed to compromising intrinsic and extrinsic factors that contribute to early graft failure, necessitating repeated islet infusions for clinical insulin independence. A lack of reliable pre-transplant measures to determine islet viability severely limits the success of islet transplantation and will limit future beta cell replacement strategies. We applied hyperspectral fluorescent microscopy to determine whether we could non-invasively detect islet damage induced by oxidative stress, hypoxia, cytokine injury, and warm ischaemia, and so predict transplant outcomes in a mouse model. In assessing islet spectral signals for NAD(P)H, flavins, collagen-I, and cytochrome-C in intact islets, we distinguished islets compromised by oxidative stress (ROS) (AUC = 1.00), hypoxia (AUC = 0.69), cytokine exposure (AUC = 0.94), and warm ischaemia (AUC = 0.94) compared to islets harvested from pristine anaesthetised heart-beating mouse donors. Significantly, with unsupervised assessment we defined an autofluorescent score for ischaemic islets that accurately predicted the restoration of glucose control in diabetic recipients following transplantation. Similar results were obtained for islet single cell suspensions, suggesting translational utility in the context of emerging beta cell replacement strategies. These data show that the pre-transplant hyperspectral imaging of islet autofluorescence has promise for predicting islet viability and transplant success.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Animais , Camundongos , Imageamento Hiperespectral , Ilhotas Pancreáticas/diagnóstico por imagem , Citocinas , Hipóxia
12.
J Biophotonics ; 16(9): e202300105, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37272291

RESUMO

Hyperspectral and multispectral imaging of cell and tissue autofluorescence is an emerging technology in which fluorescence imaging is applied to biological materials across multiple spectral channels. This produces a stack of images where each matched pixel contains information about the sample's spectral properties at that location. This allows precise collection of molecularly specific data from a broad range of native fluorophores. Importantly, complex information, directly reflective of biological status, is collected without staining and tissues can be characterised in situ, without biopsy. For oncology, this can spare the collection of biopsies from sensitive regions and enable accurate tumour mapping. For in vivo tumour analysis, the greatest focus has been on oral cancer, whereas for ex vivo assessment head-and-neck cancers along with colon cancer have been the most studied, followed by oral and eye cancer. This review details the scope and progress of research undertaken towards clinical translation in oncology.


Assuntos
Neoplasias do Colo , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Imageamento Hiperespectral , Neoplasias Bucais/diagnóstico por imagem , Imagem Óptica
13.
J Physiol ; 601(14): 2801-2826, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37227074

RESUMO

Renal fibrosis is the final common pathophysiological pathway in chronic kidney disease (CKD) regardless of the underlying cause of kidney injury. Tubulointerstitial fibrosis (TIF) is considered to be the key pathological predictor of CKD progression. Currently, the gold-standard tool to identify TIF is kidney biopsy, an invasive method that carries risks. Non-invasive diagnostics rely on an estimation of glomerular filtration rate and albuminuria to assess kidney function, but these fail to diagnose early CKD accurately or to predict progressive decline in kidney function. In this review, we summarize the current and emerging molecular biomarkers that have been studied in various clinical settings and in animal models of kidney disease and that are correlated with the degree of TIF. We examine the potential of these biomarkers to diagnose TIF non-invasively and to predict disease progression. We also examine the potential of new technologies and non-invasive diagnostic approaches in assessing TIF. Limitations of current and potential biomarkers are discussed and knowledge gaps identified.


Assuntos
Rim , Insuficiência Renal Crônica , Animais , Prognóstico , Rim/metabolismo , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Fibrose , Biomarcadores/metabolismo
14.
Anal Chim Acta ; 1259: 341211, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100476

RESUMO

Protein conjugates are commonly used in biochemistry, including diagnostic platforms such as antibody-based immunoassays. Antibodies can be bound to a variety of molecules creating conjugates with desirable functions, particularly for imaging and signal amplification. Cas12a is a recently discovered programable nuclease with the remarkable capability to amplify assay signals due to its trans-cleavage property. In this study, we directly conjugated antibody with Cas12a/gRNA ribonucleoprotein without the loss of function in either constituent. The conjugated antibody was suitable for immunoassays and the conjugated Cas12a was capable of amplifying the signal produced in an immunosensor without the need to change the original assay protocol. We applied the bi-functional antibody-Cas12a/gRNA conjugate to successfully detect two different types of targets, a whole pathogenic microorganism, Cryptosporidium, and a small protein, cytokine IFN-γ, with sensitivity reaching one single microorganism per sample and 10 fg/mL for IFN-γ, respectively. With simple substitution of the antibody conjugated with the Cas12a/gRNA RNP, this approach can potentially be applied to increase sensitivity of a variety of immunoassays for a broad range of different analytes.


Assuntos
Técnicas Biossensoriais , Criptosporidiose , Cryptosporidium , Imunoconjugados , Humanos , Sistemas CRISPR-Cas , Imunoensaio , Anticorpos , Ribonucleoproteínas
15.
Comput Struct Biotechnol J ; 21: 1851-1859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915378

RESUMO

Islets transplanted for type-1 diabetes have their viability reduced by warm ischemia, dimethyloxalylglycine (DMOG; hypoxia model), oxidative stress and cytokine injury. This results in frequent transplant failures and the major burden of patients having to undergo multiple rounds of treatment for insulin independence. Presently there is no reliable measure to assess islet preparation viability prior to clinical transplantation. We investigated deep morphological signatures (DMS) for detecting the exposure of islets to viability compromising insults from brightfield images. Accuracies ranged from 98 % to 68 % for; ROS damage, pro-inflammatory cytokines, warm ischemia and DMOG. When islets were disaggregated to single cells to enable higher throughput data collection, good accuracy was still obtained (83-71 %). Encapsulation of islets reduced accuracy for cytokine exposure, but it was still high (78 %). Unsupervised modelling of the DMS for islet preparations transplanted into a syngeneic mouse model was able to predict whether or not they would restore glucose control with 100 % accuracy. Our strategy for constructing DMS' is effective for the assessment of islet pre-transplant viability. If translated into the clinic, standard equipment could be used to prospectively identify non-functional islet preparations unable to contribute to the restoration of glucose control and reduce the burden of unsuccessful treatments.

16.
J Biophotonics ; 16(4): e202200264, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36602432

RESUMO

Hyperspectral and multispectral imaging of cell and tissue autofluorescence employs fluorescence imaging, without exogenous fluorophores, across multiple excitation/emission combinations (spectral channels). This produces an image stack where each pixel (matched by location) contains unique information about the sample's spectral properties. Analysis of this data enables access to a rich, molecularly specific data set from a broad range of cell-native fluorophores (autofluorophores) directly reflective of biochemical status, without use of fixation or stains. This non-invasive, non-destructive technology has great potential to spare the collection of biopsies from sensitive regions. As both staining and biopsy may be impossible, or undesirable, depending on the context, this technology great diagnostic potential for clinical decision making. The main research focus has been on the identification of neoplastic tissues. However, advances have been made in diverse applications-including ophthalmology, cardiovascular health, neurology, infection, assisted reproduction technology and organ transplantation.


Assuntos
Imageamento Hiperespectral , Imagem Óptica
17.
Biomed Pharmacother ; 155: 113837, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271586

RESUMO

In this study, we brought together X-ray induced photodynamic therapy (X-PDT) and chemo-drug (5-FU) for the treatment on colorectal cancer cells. This was achieved by developing a lipid-polymer hybrid nanoparticle delivery system (FA-LPNPs-VP-5-FU). It was prepared by incorporating a photosensitizer (verteporfin), chemotherapy drug (5-FU) and a targeting moiety (folic acid) into one platform. The average size of these nanoparticles was around 100 nm with low polydispersity. When exposed to clinical doses of 4 Gy X-ray radiation, FA-LPNPs-VP-5-FU generated sufficient amounts of reactive oxygen species, triggering the apoptosis and necrosis pathway of cancer cells. Our combined X-PDT and chemo-drug strategy was effective in inhibiting cancer cells' growth and proliferation. Cell cycle analyses revealed that our treatment induced G2/M and S phase arrest in HCT116 cells. Our results indicate that this combined treatment provides better antitumour effect in colorectal cancer cells than each of these modalities alone. This may offer a novel approach for effective colorectal cancer treatment with reduced off-target effect and drug toxicity.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanopartículas , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros , Verteporfina , Raios X , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácido Fólico/farmacologia , Lipídeos , Fluoruracila , Neoplasias Colorretais/tratamento farmacológico
18.
Biomedicines ; 10(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35884850

RESUMO

The purpose of this study is to develop a deep radiomic signature based on an artificial intelligence (AI) model. This radiomic signature identifies oocyte morphological changes corresponding to reproductive aging in bright field images captured by optical light microscopy. Oocytes were collected from three mice groups: young (4- to 5-week-old) C57BL/6J female mice, aged (12-month-old) mice, and aged mice treated with the NAD+ precursor nicotinamide mononucleotide (NMN), a treatment recently shown to rejuvenate aspects of fertility in aged mice. We applied deep learning, swarm intelligence, and discriminative analysis to images of mouse oocytes taken by bright field microscopy to identify a highly informative deep radiomic signature (DRS) of oocyte morphology. Predictive DRS accuracy was determined by evaluating sensitivity, specificity, and cross-validation, and was visualized using scatter plots of the data associated with three groups: Young, old and Old + NMN. DRS could successfully distinguish morphological changes in oocytes associated with maternal age with 92% accuracy (AUC~1), reflecting this decline in oocyte quality. We then employed the DRS to evaluate the impact of the treatment of reproductively aged mice with NMN. The DRS signature classified 60% of oocytes from NMN-treated aged mice as having a 'young' morphology. In conclusion, the DRS signature developed in this study was successfully able to detect aging-related oocyte morphological changes. The significance of our approach is that DRS applied to bright field oocyte images will allow us to distinguish and select oocytes originally affected by reproductive aging and whose quality has been successfully restored by the NMN therapy.

19.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886957

RESUMO

Chronic kidney disease (CKD) is a global health issue, affecting more than 10% of the worldwide population. The current approach for formal diagnosis and prognostication of CKD typically relies on non-invasive serum and urine biomarkers such as serum creatinine and albuminuria. However, histological evidence of tubulointerstitial fibrosis is the 'gold standard' marker of the likelihood of disease progression. The development of novel biomedical technologies to evaluate exfoliated kidney cells from urine for non-invasive diagnosis and prognostication of CKD presents opportunities to avoid kidney biopsy for the purpose of prognostication. Efforts to apply these technologies more widely in clinical practice are encouraged, given their potential as a cost-effective approach, and no risk of post-biopsy complications such as bleeding, pain and hospitalization. The identification of biomarkers in exfoliated kidney cells from urine via western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence techniques, measurement of cell and protein-specific messenger ribonucleic acid (mRNA)/micro-RNA and other techniques have been reported. Recent innovations such as multispectral autofluorescence imaging and single-cell RNA sequencing (scRNA-seq) have brought additional dimensions to the clinical application of exfoliated kidney cells from urine. In this review, we discuss the current evidence regarding the utility of exfoliated proximal tubule cells (PTC), podocytes, mesangial cells, extracellular vesicles and stem/progenitor cells as surrogate markers for the early diagnosis and prognostication of CKD. Future directions for development within this research area are also identified.


Assuntos
Insuficiência Renal Crônica , Biomarcadores , Creatinina , Diagnóstico Precoce , Humanos , Rim/patologia , Insuficiência Renal Crônica/complicações
20.
ACS Nano ; 16(6): 8891-8903, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35613428

RESUMO

Gallium (Ga) compounds, as the source of Ga ions (Ga3+), have been historically used as anti-inflammatories. Currently, the widely accepted mechanisms of the anti-inflammatory effects for Ga3+ are rationalized on the basis of their similarities to ferric ions (Fe3+), which permits Ga3+ to bind with Fe-binding proteins and subsequently disturbs the Fe homeostasis in the immune cells. Here in contrast to the classic views, our study presents the mechanisms of Ga as anti-inflammatory by delivering Ga nanodroplets (GNDs) into lipopolysaccharide-induced macrophages and exploring the processes. The GNDs show a selective inhibition of nitric oxide (NO) production without affecting the accumulation of pro-inflammatory mediators. This is explained by GNDs disrupting the synthesis of inducible NO synthase in the activated macrophages by upregulating the levels of eIF2α phosphorylation, without interfering with the Fe homeostasis. The Fe3+ transferrin receptor-independent endocytosis of GNDs by the cells prompts a fundamentally different mechanism as anti-inflammatories in comparison to that imparted by Ga3+. This study reveals the fundamental molecular basis of GND-macrophage interactions, which may provide additional avenues for the use of Ga for anti-inflammatory and future biomedical and pharmaceutical applications.


Assuntos
Gálio , Gálio/farmacologia , Transferrina/metabolismo , Ferro/metabolismo , Homeostase , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...