Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 19(12): 2804-2810, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33720265

RESUMO

Targeted photodynamic therapy (PDT) is one of the promising approaches for the selective killing of cancerous cells without affecting the normal cells, and hence designing new strategies for targeted PDT is extremely important. Herein we report the design and synthesis of a new class of nanosheets derived from the self-assembly of the iodo-BODIPY-biotin conjugate as a photosensitizer for targeted PDT applications. The nanosheet exhibits a high extinction coefficient in the NIR region, high singlet oxygen efficiency, no toxicity in the dark and cell targeting ligands (biotin) on the surface, which are necessary features required for an ideal photosensitizer. Overexpression of sodium-dependent multivitamin transporters (SMVTs) in HeLa and A549 (biotin receptor positive cell lines) is explored for the selective uptake of the nanophotosensitizer through receptor mediated endocytosis (interaction between biotin and SMVT). Control experiments using a biotin receptor negative cell line (WI-38) are also carried out to confirm that the specific interaction between the SMVTs and biotin is mainly responsible for the selective uptake of the photosensitizer. Efficient killing of cancerous cells is demonstrated upon light irradiation through the generation of singlet oxygen and other reactive oxygen species around the cellular environment.


Assuntos
Antineoplásicos/farmacologia , Biotina/farmacologia , Compostos de Boro/farmacologia , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Biotina/química , Compostos de Boro/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Ligantes , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
2.
Acc Chem Res ; 53(11): 2668-2679, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33052654

RESUMO

The unparalleled ability of DNA to recognize its complementary strand through Watson and Crick base pairing is one of the most reliable molecular recognition events found in natural systems. This highly specific sequence information encoded in DNA enables it to be a versatile building block for bottom-up self-assembly. Hence, the decoration of functional nanostructures with information-rich DNA is extremely important as this allows the integration of other functional molecules onto the surface of the nanostructures through DNA hybridization in a highly predictable manner. DNA amphiphiles are a class of molecular hybrids where a short hydrophilic DNA is conjugated to a hydrophobic moiety. Since DNA amphiphiles comprise DNA as the hydrophilic segment, their self-assembly in aqueous medium always results in the formation of nanostructures with shell made of DNA. This clearly suggests that self-assembly of DNA amphiphiles is a straightforward strategy for the ultradense decoration of a nanostructure with DNA. However, initial attempts toward the design of DNA amphiphiles were primarily focused on long flexible hydrocarbon chains as the hydrophobic moiety, and it has been demonstrated in several examples that they typically self-assemble into DNA-decorated micelles (spherical or cylindrical). Hence, molecular level control over the self-assembly of DNA amphiphiles and achieving diverse morphologies was extremely challenging and unrealized until recently.In this Account, we summarize our recent efforts in the area of self-assembly of DNA amphiphiles and narrate the remarkable effect of the incorporation of a large π-surface as the hydrophobic domain in the self-assembly of DNA amphiphiles. Self-assembly of DNA amphiphiles with flexible hydrocarbon chains as the hydrophobic moiety is primarily driven by the hydrophobic effect. The morphology of such nanostructures is typically predicted based on the volume ratio of hydrophobic to hydrophilic segments. However, control over the self-assembly and prediction of the morphology become increasingly challenging when the hydrophobic moieties can interact with each other through other noncovalent interactions. In this Account, the unique self-assembly behaviors of DNA-π amphiphiles, where a large π-surface acts as the hydrophobe, are described. Due to the extremely strong π-π stacking in aqueous medium, the assembly of the amphiphile is found to preferably proceed in a lamellar fashion (bilayer) and hence the morphology of the nanostructures can easily be tuned by the structural modification of the π-surface. Design principles for crafting various DNA-decorated lamellar nanostructures including unilamellar vesicles, two-dimensional (2D) nanosheets, and helically twisted nanoribbons by selecting suitable π-surfaces are discussed. Unilamellar vesicular nanostructures were achieved by using linear oligo(phenylene ethynylene) (OPE) as the hydrophobic segment, where lamellar assembly undergoes folding to form unilamellar vesicles. The replacement of OPE with a strongly π-stacking hydrophobe such as hexabenzocoronene (HBC) or tetraphenylethylene (TPE) provides extremely strong π-stacking compared to OPE, which efficiently directed the 2D growth for the lamellar assembly and led to the formation of 2D nanosheets. A helical twist in the lamella was achieved by the replacement of HBC with hexaphenylbenzene (HPB), which is the twisted analogue of HBC, directing the assembly into helically twisted nanoribbons. The most beneficial structural feature of this kind of nanostructure is the extremely dense decoration of their surface with ssDNA, which can further be used for DNA-directed organization of other functional nanomaterials. By exploring this, their potential as a nanoscaffold for predefined assembly of plasmonic nanomaterials into various plasmonic 1D, 2D, and 3D nanostructures through DNA hybridization is discussed. Moreover, the design of pH-responsive DNA-based vesicles and their application as a nanocarrier for payload delivery is also demonstrated.


Assuntos
DNA/química , Nanoestruturas/química , Lipossomas Unilamelares/química , Alcinos/química , Catálise , Portadores de Fármacos/química , Éteres/química , Ouro/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico
3.
Chemistry ; 26(5): 1037-1041, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31749263

RESUMO

High aspect ratio, sugar-decorated 2D nanosheets are ideal candidates for the capture and agglutination of bacteria. Herein, the design and synthesis of two carbohydrate-based Janus amphiphiles that spontaneously self-assemble into high aspect ratio 2D sheets are reported. The unique structural features of the sheets include the extremely high aspect ratio and dense display of galactose on the surface. These structural characteristics allow the sheet to act as a supramolecular 2D platform for the capture and agglutination of E. coli through specific multivalent noncovalent interactions, which significantly reduces the mobility of the bacteria and leads to the inhibition of their proliferation. Our results suggest that the design strategy demonstrated here can be applied as a general approach for the crafting of biomolecule-decorated 2D nanosheets, which can perform as 2D platforms for their interaction with specific targets.


Assuntos
Dendrímeros/metabolismo , Escherichia coli/metabolismo , Galactose/química , Nanoestruturas/química , Aglutinação/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/química , Humanos , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Nanoestruturas/toxicidade , Prata/química
4.
Angew Chem Int Ed Engl ; 58(12): 3865-3869, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30690822

RESUMO

Crafting of chiral plasmonic nanostructures is extremely important and challenging. DNA-directed organization of nanoparticle on a chiral template is the most appealing strategy for this purpose. Herein, we report a supramolecular approach for the design of DNA-decorated, helically twisted nanoribbons through the amphiphilicity-driven self-assembly of a new class of amphiphiles derived from DNA and hexaphenylbenzene (HPB). The ribbons are self-assembled in a lamellar fashion through the hydrophobic interactions of HPB. The transfer of molecular chirality of ssDNA into the HPB core results in the bias of one of the chiral propeller conformations for HPB and induces a helical twist into the lamellar packing, and leads to the formation of DNA-wrapped nanoribbons with M-helicity. The potential of the ribbon to act as a reversible template for the 1D chiral organization of plasmonic nanomaterials through DNA hybridization is demonstrated.

5.
Nanoscale ; 10(36): 17174-17181, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30187067

RESUMO

Preventing the aggregation of NPs and their recovery are the two major hurdles in NP based catalysis. Immobilization of NPs on a support has proven to be a promising strategy to overcome these difficulties. Herein we report the design of high aspect ratio two-dimensional (2D) crystalline DNA nanosheets formed from the amphiphilicity-driven self-assembly of DNA-tetraphenylethylene amphiphiles and also demonstrate the potential of DNA nanosheets for the immobilization of catalytically active NPs. The most remarkable feature of this approach is the high loading of NPs in a non-aggregated manner, and hence exhibiting enhanced catalytic activity. Recycling of NP loaded nanosheets for several cycles without reduction in catalytic efficiency by simple ultrafiltration is also demonstrated.

7.
Nanoscale ; 10(1): 222-230, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29210437

RESUMO

Nanogels made of biomolecules are one of the potential candidates as a nanocarrier for drug delivery applications. The unique structural characteristics and excellent biocompatibility of DNA suggest that DNA nanogels would be an ideal candidate. Herein, a general design strategy for the crafting of DNA nanogels with controllable size using the multivalent host-guest interaction between ß-CD functionalized branched DNA nanostructures as the host and a star-shaped adamantyl-terminated 8-arm poly(ethylene glycol) polymer as the guest is reported. Our results reveal that multivalent host-guest interactions are necessary for the nanogel formation. Nanogels exhibit excellent biocompatibility, good cell permeability and high drug encapsulation ability, which are promising features for their application as a drug carrier. The encapsulation of doxorubicin, an anticancer drug, inside the hydrophobic network of the nanogel and its delivery into cancer cells are also reported. We hope that the general design strategy demonstrated for the creation of DNA nanogels may encourage other researchers to use this approach for the design of DNA nanogels of other DNA nanostructures, and explore the potential of DNA nanogels in drug delivery applications.


Assuntos
DNA/química , Portadores de Fármacos/química , Géis/química , Nanoestruturas/química , Polietilenoglicóis , Doxorrubicina/administração & dosagem , Células HeLa , Humanos , Células MCF-7 , Polietilenoimina
8.
J Am Chem Soc ; 139(49): 17799-17802, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29232955

RESUMO

Design and synthesis of high aspect ratio 2D nanosheets with surface having ultradense array of information-rich molecule such as DNA is extremely challenging. Herein, we report a universal strategy based on amphiphilicity-driven self-assembly for the crafting of high aspect ratio, 2D sheets that are densely surface-decorated with DNA. Microscopy and X-ray analyses have shown that the sheets are crystalline. The most unique feature of the sheets is DNA-directed surface addressability, which is demonstrated through the decoration of either faces of the sheet with gold nanoparticles through sequence-specific DNA hybridization. Our results suggest that this design strategy can be applied as a general approach for the synthesis of DNA decorated high aspect ratio sheets, which may find potential applications in materials science, drug delivery, and nanoelectronics.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico
9.
Chemistry ; 23(35): 8348-8352, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28489295

RESUMO

A pH-responsive DNAsome derived from the amphiphilicity-driven self-assembly of DNA amphiphile containing C-rich DNA sequence is reported. The acidification of DNAsome induces a structural change of C-rich DNA from random coil to an i-motif structure that triggers the disassembly of DNAsome and its subsequent morphological transformation into an open entangled network. The encapsulation of a hydrophobic guest into the membrane of DNAsome and its pH-triggered release upon acidification of DNAsome is also demonstrated.

10.
Nanoscale ; 9(17): 5425-5432, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28300237

RESUMO

DNA nanostructures have found potential applications in various fields including nanotechnology, materials science and nanomedicine, hence the design and synthesis of DNA nanostructures is extremely important. Self-assembly of DNA amphiphiles provides an efficient strategy for the crafting of soft DNA nanostructures. However, the synthesis of DNA amphiphiles is always challenging. Herein, we show a non-covalent approach based on the host-guest interaction between ß-CD and adamantane for the synthesis of DNA amphiphiles, and report their amphiphilicity-driven self-assembly into DNA decorated vesicles. The DNA-directed surface addressability of the vesicles is demonstrated through their surface decoration with Au-NPs through DNA hybridization. Our results suggest that the non-covalent approach represents a simple, efficient and universal method for the synthesis of DNA amphiphiles, and provides an excellent strategy for the creation of smart DNA nanostructures.


Assuntos
DNA/química , Nanoestruturas/química , Química Click , Hibridização de Ácido Nucleico
11.
Org Biomol Chem ; 14(29): 6960-9, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27241196

RESUMO

DNA based spherical nanostructures are one of the promising nanostructures for several biomedical and biotechnological applications due to their excellent biocompatibility and DNA-directed surface addressability. Herein, we report the synthesis and amphiphilicity-driven self-assembly of two classes of DNA (hydrophilic)-chromophore (hydrophobic) hybrid amphiphiles into spherical nanostructures. A solid-phase "click" chemistry based modular approach is demonstrated for the synthesis of DNA-chromophore amphiphiles. Various spectroscopic and microscopic analyses reveal the self-assembly of the amphiphiles into vesicular and micellar assemblies with the corona made of hydrophilic DNA and the hydrophobic chromophoric unit as the core of the spherical nanostructures.


Assuntos
Benzopiranos/química , DNA/química , Indóis/química , Nanoestruturas/química , Porfirinas/química , Tensoativos/síntese química , Química Click , Interações Hidrofóbicas e Hidrofílicas , Micelas , Tensoativos/química
12.
Angew Chem Int Ed Engl ; 53(32): 8352-7, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24962762

RESUMO

Surface-addressable nanostructures of linearly π-conjugated molecules play a crucial role in the emerging field of nanoelectronics. Herein, by using DNA as the hydrophilic segment, we demonstrate a solid-phase "click" chemistry approach for the synthesis of a series of DNA-chromophore hybrid amphiphiles and report their reversible self-assembly into surface-engineered vesicles with enhanced emission. DNA-directed surface addressability of the vesicles was demonstrated through the integration of gold nanoparticles onto the surface of the vesicles by sequence-specific DNA hybridization. This system could be converted to a supramolecular light-harvesting antenna by integrating suitable FRET acceptors onto the surface of the nanostructures. The general nature of the synthesis, surface addressability, and biocompatibility of the resulting nanostructures offer great promises for nanoelectronics, energy, and biomedical applications.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Oligonucleotídeos/química , Microscopia Eletrônica de Transmissão , Estereoisomerismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA