Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(6): 4487-95, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26791108

RESUMO

PEM water electrolysis has recently emerged as one of the most promising technologies for large H2 production from a temporal surplus of renewable electricity; yet it is expensive, partly due to the use of large amounts of Ir present in the anode. Here we report the development and characterization of a cost-effective catalyst, which consists of metallic Ir nanoparticles supported on commercial Ti4O7. The catalyst is synthesized by reducing IrCl3 with NaBH4 in a suspension containing Ti4O7, cetyltrimethylammonium bromide (CTAB) and anhydrous ethanol. No thermal treatment was applied afterwards in order to preserve the high conductivity of Ti4O7 and the metallic properties of Ir. Electron microscopy images show an uniform distribution of mostly single Ir particles covering the electro-ceramic support, although some agglomerates are still present. X-ray diffraction (XRD) analysis reveals a cubic face centered structure of Ir nanoparticles with a crystallite size of ca. 1.8 nm. According to X-ray photoelectron spectroscopy (XPS), the ratio of metallic Ir and Ir-oxide, identified as Ir(3+), is 3 : 1 after the removal of surface contamination. Other surface properties such as primary particle size distribution and surface potential were determined by atomic force microscopy (AFM). Cyclic and linear voltammetric measurements were conducted to study the electrochemical surface and kinetics of Ir-black and Ir/Ti4O7. The developed catalyst outperforms the commercial Ir-black in terms of mass activity for the oxygen evolution reaction (OER) in acid medium by a factor of four, measured at 0.25 V overpotential and room temperature. In general, the Ir/Ti4O7 catalyst exhibits improved kinetics and higher turnover frequency (TOF) compared to Ir-black. The developed Ir/Ti4O7 catalyst allows reducing the precious metal loading in the anode of a PEM electrolyzer by taking advantage of the use of an electro-ceramic support.

2.
Angew Chem Int Ed Engl ; 55(2): 742-6, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26616747

RESUMO

We have developed a highly active nanostructured iridium catalyst for anodes of proton exchange membrane (PEM) electrolysis. Clusters of nanosized crystallites are obtained by reducing surfactant-stabilized IrCl3 in water-free conditions. The catalyst shows a five-fold higher activity towards oxygen evolution reaction (OER) than commercial Ir-black. The improved kinetics of the catalyst are reflected in the high performance of the PEM electrolyzer (1 mg(Ir) cm(-2)), showing an unparalleled low overpotential and negligible degradation. Our results demonstrate that this enhancement cannot be only attributed to increased surface area, but rather to the ligand effect and low coordinate sites resulting in a high turnover frequency (TOF). The catalyst developed herein sets a benchmark and a strategy for the development of ultra-low loading catalyst layers for PEM electrolysis.

3.
Sci Rep ; 5: 12146, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26173723

RESUMO

Lithium-sulphur batteries have generated tremendous research interest due to their high theoretical energy density and potential cost-effectiveness. The commercial realization of Li-S batteries is still hampered by reduced cycle life associated with the formation of electrolyte soluble higher-order polysulphide (Li2Sx, x = 4-8) intermediates, leading to capacity fading, self-discharge, and a multistep voltage profile. Herein, we have realized a practical approach towards a direct transformation of sulphur to Li2S2/Li2S in lithium-sulphur batteries by alteration of the reaction pathway. A coconut shell derived ultramicroporous carbon-sulphur composite cathode has been used as reaction directing template for the sulphur. The lithiation/delithiation and capacity fading mechanism of microporous carbon confined sulphur composite was revealed by analyzing the subsurface using X-ray photoelectron spectroscopy. No higher-order polysulphides were detected in the electrolyte, on the surface, and in the subsurface of the cathode composite. The altered reaction pathway is reflected by a single-step profile in the discharge/charge of a lithium-sulphur cell.

4.
Microsc Microanal ; 20(3): 715-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713100

RESUMO

It is demonstrated that energy-filtered transmission electron microscope enables following of in situ changes of the Ca-L2,3 edge which can originate from variations in both local symmetry and bond lengths. Low accelerating voltages of 20 and 40 kV slow down radiation damage effects and enable study of the start and finish of phase transformations. We observed electron beam-induced phase transformation of single crystalline calcite (CaCO3) to polycrystalline calcium oxide (CaO) which occurs in different stages. The coordination of Ca in calcite is close to an octahedral one streched along the <111> direction. Changes during phase transformation to an octahedral coordination of Ca in CaO go along with a bond length increase by 5 pm, where oxygen is preserved as a binding partner. Electron loss near-edge structure of the Ca-L2,3 edge show four separated peaks, which all shift toward lower energies during phase transformation at the same time the energy level splitting increases. We suggest that these changes can be mainly addressed to the change of the bond length on the order of picometers. An important pre-condition for such studies is stability of the energy drift in the range of meV over at least 1 h, which is achieved with the sub-Ångström low-voltage transmission electron microscope I prototype microscope.

5.
Part Fibre Toxicol ; 10: 32, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23895432

RESUMO

BACKGROUND: Cobalt-ferrite nanoparticles (Co-Fe NPs) are attractive for nanotechnology-based therapies. Thus, exploring their effect on viability of seven different cell lines representing different organs of the human body is highly important. METHODS: The toxicological effects of Co-Fe NPs were studied by in-vitro exposure of A549 and NCIH441 cell-lines (lung), precision-cut lung slices from rat, HepG2 cell-line (liver), MDCK cell-line (kidney), Caco-2 TC7 cell-line (intestine), TK6 (lymphoblasts) and primary mouse dendritic-cells. Toxicity was examined following exposure to Co-Fe NPs in the concentration range of 0.05 -1.2 mM for 24 and 72 h, using Alamar blue, MTT and neutral red assays. Changes in oxidative stress were determined by a dichlorodihydrofluorescein diacetate based assay. Data analysis and predictive modeling of the obtained data sets were executed by employing methods of Knowledge Discovery from Data with emphasis on a decision tree model (J48). RESULTS: Different dose-response curves of cell viability were obtained for each of the seven cell lines upon exposure to Co-Fe NPs. Increase of oxidative stress was induced by Co-Fe NPs and found to be dependent on the cell type. A high linear correlation (R2=0.97) was found between the toxicity of Co-Fe NPs and the extent of ROS generation following their exposure to Co-Fe NPs. The algorithm we applied to model the observed toxicity belongs to a type of supervised classifier. The decision tree model yielded the following order with decrease of the ranking parameter: NP concentrations (as the most influencing parameter), cell type (possessing the following hierarchy of cell sensitivity towards viability decrease: TK6 > Lung slices > NCIH441 > Caco-2 = MDCK > A549 > HepG2 = Dendritic) and time of exposure, where the highest-ranking parameter (NP concentration) provides the highest information gain with respect to toxicity. The validity of the chosen decision tree model J48 was established by yielding a higher accuracy than that of the well-known "naive bayes" classifier. CONCLUSIONS: The observed correlation between the oxidative stress, caused by the presence of the Co-Fe NPs, with the hierarchy of sensitivity of the different cell types towards toxicity, suggests that oxidative stress is one possible mechanism for the toxicity of Co-Fe NPs.


Assuntos
Inteligência Artificial , Cobalto/toxicidade , Compostos Férricos/toxicidade , Nanopartículas Metálicas , Toxicologia/métodos , Algoritmos , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Mineração de Dados , Técnicas de Apoio para a Decisão , Árvores de Decisões , Cães , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Modelos Lineares , Células Madin Darby de Rim Canino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
6.
Toxicol Sci ; 122(2): 489-501, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21602188

RESUMO

The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared with those of cobalt ions (Co-ions) using six different cell lines representing lung, liver, kidney, intestine, and the immune system. Dose-response curves were studied in the concentration range of 0.05-1.0 mM, employing 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide test, neutral red, and Alamar blue as end point assays following exposures for 48 and 72 h. Data analysis and predictive modeling of the obtained data sets were executed by employing a decision tree model (J48), where training and validation were carried out by an iterative process. It was established, as expected, that concentration is the highest rank parameter. This is because concentration parameter provides the highest information gain with respect to toxicity. The second-rank parameter emerged to be either the compound type (Co-ions or Co-NPs) or the cell model, depending on the concentration range. The third and the lowest rank in the model was exposure duration. The hierarchy of cell sensitivity toward cobalt ions was found to obey the following sequence of cell lines: A549 > MDCK > NCIH441 > Caco-2 > HepG2 > dendritic cells (DCs), with A549 being the most sensitive cell line and primary DCs were the least sensitive ones. However, a different hierarchy pattern emerged for Co-NPs: A549 = MDCK = NCIH441 = Caco-2 > DCs > HepG2. The overall findings are in line with the hypothesis that the toxic effects of aggregated cobalt NPs are mainly due to cobalt ion dissolution from the aggregated NPs.


Assuntos
Cobalto/toxicidade , Íons/toxicidade , Nanopartículas Metálicas/toxicidade , Algoritmos , Animais , Células CACO-2 , Feminino , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Reprodutibilidade dos Testes
7.
Int J Legal Med ; 124(2): 113-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19904550

RESUMO

The scope of this study was to evaluate the incidence and the eventual consequences of amniotic fluid aspiration (AFA) in cases of sudden infant death. Cases of sudden infant death syndrome (SIDS; n = 113: 39 females, 74 males; mean age 4.6 months) were compared to a control group of 39 cases of explained death (14 females, 25 males; mean age 5.6 months). In each case, sections of the lung stained with hematoxylin and eosin and with the immunohistochemical reaction 34BE12 specific for cytokeratins were available. The microscope slides were observed at x200 magnification and semi-quantitatively classified into four categories(-, +, ++, and +++). In both groups, rests of amniotic fluid could be observed up to the fourth month of life. The comparison between the two groups did not show any significant difference. In the SIDS group, immunohistochemical reactions with the antibodies CD68, MRP8, MRP14, 27E10, 25F9, CD3, CD20Cy, and CD45R0 were available for the lungs. Twelve cases with AFA were compared to a group of SIDS cases without AFA with similar age and pathological distribution to evaluate whether the presence of amniotic remnants induced inflammatory changes in the lungs. No differences emerged. This study shows that AFA is not a rare event. Even moderate to severe AFA does not necessary cause death. A correlation between AFA and SIDS could not be shown.


Assuntos
Líquido Amniótico , Aspiração Respiratória/patologia , Morte Súbita do Lactente/patologia , Estudos de Casos e Controles , Feminino , Patologia Legal , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Pulmão/patologia , Masculino , Microscopia Eletrônica
8.
Nature ; 449(7161): 456-8, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17898766

RESUMO

The oxygen fugacity f(O2)of the Earth's mantle is one of the fundamental variables in mantle petrology. Through ferric-ferrous iron and carbon-hydrogen-oxygen equilibria, f(O2) influences the pressure-temperature positions of mantle solidi and compositions of small-degree mantle melts. Among other parameters, f(O2) affects the water storage capacity and rheology of the mantle. The uppermost mantle, as represented by samples and partial melts, is sufficiently oxidized to sustain volatiles, such as H2O and CO2, as well as carbonatitic melts, but it is not known whether the shallow mantle is representative of the entire upper mantle. Using high-pressure experiments, we show here that large parts of the asthenosphere are likely to be metal-saturated. We found that pyroxene and garnet synthesized at >7 GPa in equilibrium with metallic Fe can incorporate sufficient ferric iron that the mantle at >250 km depth is so reduced that an (Fe,Ni)-metal phase may be stable. Our results indicate that the oxidized nature of the upper mantle can no longer be regarded as being representative for the Earth's upper mantle as a whole and instead that oxidation is a shallow phenomenon restricted to an upper veneer only about 250 km in thickness.

9.
Small ; 2(12): 1476-83, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17193009

RESUMO

Passivated iron nanoparticles (10-30 nm) have been synthesized by laser pyrolysis of a mixture of iron pentacarbonyl and ethylene vapors followed by controlled oxidation. The nanoparticles show a well-constructed iron-iron oxide core-shell structure, in which the thickness and nature (structure similar to maghemite, gamma-Fe2O3) of the shell is found to be independent of the initial conditions. On the other hand, the composition of the core is found to change with the particle size from the alpha-Fe structure to a highly disordered Fe phase (probably containing C atoms in its structure). The dependence of the magnetic properties on the particle size, iron oxide fraction, and temperature was also investigated. In the case of smaller particles, the magnetic data indicate the existence at low temperature of a large exchange anisotropy field, the magnitude of which increases with decreasing temperature in correspondence with the freezing of magnetic moments in the oxide shell.


Assuntos
Compostos Férricos/química , Temperatura Alta , Ferro/química , Lasers , Nanopartículas/química , Compostos Férricos/análise , Compostos Férricos/síntese química , Ferro/análise , Magnetismo , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Espectroscopia de Perda de Energia de Elétrons , Espectroscopia de Mossbauer , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...