Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 57(2): 105-122, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37052042

RESUMO

BACKGROUND/AIMS: Macrophages interact with tumor cells within the tumor microenvironment (TME), which plays a crucial role in tumor progression. Cancer cells also can instruct macrophages to facilitate the spread of cancer and the growth of tumors. Thus, modulating macrophages-cancer cells interaction in the TME may be therapeutically beneficial. Although calcitriol (an active form of vitamin D) has anticancer properties, its role in TME is unclear. This study examined the role of calcitriol in the regulation of macrophages and cancer cells in the TME and its influence on the proliferation of breast cancer cells. METHODS: We modeled the TME, in vitro, by collecting conditioned medium from cancer cells (CCM) and macrophages (MCM) and culturing each cell type separately with and without (control) a high-dose (0.5 µM) calcitriol (an active form of vitamin D). An MTT assay was used to examine cell viability. Apoptosis was detected using FITC (fluorescein isothiocyanate) annexin V apoptosis detection kit. Western blotting was used to separate and identify proteins. Quantitative real-time PCR was used to analyze gene expression. Molecular docking studies were performed to evaluate the binding type and interactions of calcitriol to the GLUT1 and mTORC1 ligand-binding sites. RESULTS: Calcitriol treatment suppressed the expression of genes and proteins implicated in glycolysis (GLUT1, HKII, LDHA), promoted cancer cell apoptosis, and reduced viability and Cyclin D1gene expression in MCM-induced breast cancer cells. Additionally, calcitriol treatment suppressed mTOR activation in MCM-induced breast cancer cells. Molecular docking studies further showed efficient binding of calcitriol with GLUT1 and mTORC1. Calcitriol also inhibited CCM-mediated induction of CD206 and increased TNFα gene expression in THP1-derived macrophages. CONCLUSION: The results suggest that calcitriol may impact breast cancer progression by inhibiting glycolysis and M2 macrophage polarization via regulating mTOR activation in the TME and warrants further investigation in vivo.


Assuntos
Neoplasias da Mama , Calcitriol , Humanos , Feminino , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Simulação de Acoplamento Molecular , Microambiente Tumoral/genética , Serina-Treonina Quinases TOR/metabolismo , Macrófagos/metabolismo , Neoplasias da Mama/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Glicólise , Proliferação de Células/genética , Linhagem Celular Tumoral , Ativação de Macrófagos
2.
Nutrients ; 14(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807769

RESUMO

(1) Consumption of diets that are caloric dense but not nutrient dense have been implicated in metabolic diseases, in part through low-grade metabolic acidosis. Mitigation strategies through dietary intervention to alleviate acidosis have not been previously reported. Our objective is to determine the effects of pH enhancement (with ammonia) in high fat diet-induced obese mice that were fed beef or casein as protein sources compared to low fat diet-fed mice. (2) Methods: B6 male and female mice were randomized (n = 10) into eight diets that differ in protein source, pH enhancement of the protein, and fat content, and fed for 13 weeks: low fat (11% fat) casein (LFC), LF casein pH-enhanced (LFCN), LF lean beef (LFB), LFBN, high fat (46%) casein (HFC), HFCN, HF beef (HFB), and HFBN. Body weights and composition, and glucose tolerance tests were conducted along with terminal serum analyses. Three-way ANOVA was performed. (3) Results: A significant effect of dietary fat (LF vs. HF) was observed across all variables in both sexes (final body weight, fat mass, glucose clearance, and serum leptin). Importantly, pH enhancement significantly reduced adiposity (males only) and final body weights (females only) and significantly improved glucose clearance in both sexes. Lastly, clear sex differences were observed across all variables. (4) Conclusions: Our findings demonstrate metabolic benefits of increasing dietary pH using ammonia, while high fat intake per se (not protein source) is the major contributor to metabolic dysfunctions. Additional research is warranted to determine mechanisms underlying the beneficial effects of pH enhancement, and interactions with dietary fat content and proteins.


Assuntos
Amônia , Caseínas , Animais , Peso Corporal , Caseínas/metabolismo , Caseínas/farmacologia , Bovinos , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/metabolismo , Feminino , Glucose , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Obesos , Obesidade/metabolismo
3.
Life Sci ; 301: 120610, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35525305

RESUMO

AIMS: Breast cancer metastasis is the leading cause of mortality among breast cancer patients. Epithelial to mesenchymal transition (EMT) is a biological process that plays a fundamental role in facilitating breast cancer metastasis. The present study assessed the efficacy of parthenolide (PTL Tanacetum parthenium) on EMT and its underlying mechanisms in both lowly metastatic, estrogen-receptor positive, MCF-7 cells and highly metastatic, triple-negative MDA-MB-231 cells. MAIN METHODS: MCF-7 and MDA-MB-231 cells were treated with PTL (2 µM and 5 µM). Cell viability was determined by MTT (3-(4,5-dimethy lthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Apoptosis was analyzed by the FITC (fluorescein isothiocyanate) annexin V apoptosis detection kit. The monolayer wound scratch assay was employed to evaluate cancer cell migration. Proteins were separated and identified by Western blotting. Gene expression was analyzed by quantitative real-time PCR. KEY FINDINGS: PTL treatment significantly reduced cell viability and migration while inducing apoptosis in both cell lines. Also, PTL treatment reverses the EMT process by decreasing the mesenchymal marker vimentin and increasing the epithelial marker E-cadherin compared to the control treatment. Importantly, PTL downregulates TWIST1 (a transcription factor and regulator of EMT) gene expression, concomitant with the reduction of transforming growth factor beta1 (TGFß1) protein and gene expression in both cell lines. Additionally, molecular docking studies suggest that PTL may induce anticancer properties by targeting TGFß1 in both breast cancer cell lines. SIGNIFICANCE: Our findings provide insights into the therapeutic potential of PTL to mitigate EMT and breast cancer metastasis. These promising results demand in vivo studies.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Simulação de Acoplamento Molecular , Sesquiterpenos , Fator de Crescimento Transformador beta1/metabolismo
4.
Antioxidants (Basel) ; 11(3)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35326241

RESUMO

Major obstacles in current breast cancer treatment efficacy include the ability of breast cancer cells to develop resistance to chemotherapeutic drugs and the off-target cytotoxicity of these drugs on normal cells, leading to debilitating side effects. One major difference between cancer and normal cells is their metabolism, as cancer cells acquire glycolytic and mitochondrial metabolism alterations throughout tumorigenesis. In this study, we sought to exploit this metabolic difference by investigating alternative breast cancer treatment options based on the application of phytochemicals. Herein, we investigated three phytochemicals, namely cinnamaldehyde (CA), chlorogenic acid (CGA), and arctigenin (Arc), regarding their anti-breast-cancer properties. These phytochemicals were administered alone or in combination to MCF-7, MDA-MB-231, and HCC1419 breast cancer or normal MCF-10A and MCF-12F breast cells. Overall, our results indicated that the combination treatments showed stronger inhibitory effects on breast cancer cells versus single treatments. However, only treatments with CA (35 µM), CGA (250 µg/mL), and the combination of CA + CGA (35 µM + 250 µg/mL) showed no significant cytotoxic effects on normal mammary epithelial cells, suggesting that Arc was the driver of normal cell cytotoxicity in all other treatments. CA + CGA and, to a lesser extent, CGA alone effectively induced breast cancer cell death accompanied by decreases in mitochondrial membrane potential, increased mitochondrial superoxide, reduced mitochondrial and glycolytic ATP production, and led to significant changes in cellular and mitochondrial morphology. Altogether, the combination of CA + CGA was determined as the best anti-breast-cancer treatment strategy due to its strong anti-breast-cancer effects without strong adverse effects on normal mammary epithelial cells. This study provides evidence that targeting the mitochondria may be an effective anticancer treatment, and that using phytochemicals or combinations thereof offers new approaches in treating breast cancer that significantly reduce off-target effects on normal cells.

5.
Mol Biol Rep ; 47(10): 7771-7782, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32990902

RESUMO

Obesity is associated with hypercholesterolemia and is a global epidemic. Epidemiological and animal studies revealed cholesterol is an essential regulator of estrogen receptor positive (ER+) breast cancer progression while inhibition of cholesterol accumulation was found to prevent breast tumor growth. Individually, vitamin D and LXR agonist T0901317 showed anticancer properties. The present study investigated the effects of vitamin D3 (VD3, calcitriol), LXR agonist (T0901317) and a combination of VD3 + T0901317 on cholesterol metabolism and cancer progression in ER+ breast cancer (MCF-7) cells. VD3 or T0901317 alone reduced cholesterol accumulation significantly in MCF-7 cells concomitant with an induction of ABCA1 protein and gene expression compared to the control treatment. Most importantly, VD3 + T0901317 combination showed higher effects in reducing cholesterol levels and increasing ABCA1 protein and gene expression compared to individual treatments. Importantly, VD3 + T0901317 combination showed higher effects in increasing apoptosis as measured by annexin apoptosis assay, cell viability and was associated with induction of CHOP protein and gene expression. Additionally, the VD3 + T0901317 exerted higher effects in reducing antiapoptotic BCL-2 while increased pro-apoptotic BAX gene expression compared to the individual treatments. The present results suggest that VD3 and T0901317 combination may have an important therapeutic application to prevent obesity and hyperlipidemia mediated ER+ breast cancer progression.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Colesterol/metabolismo , Hidrocarbonetos Fluorados/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Fator de Transcrição CHOP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Humanos , Receptores X do Fígado/agonistas , Células MCF-7
6.
Antioxidants (Basel) ; 9(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033374

RESUMO

Previous studies have demonstrated that redox selenium compounds arrest cancer cell viability in vitro through their pro-oxidative activity by generating superoxide (O2•-). Currently, there are no efficacious treatment options for women with Triple Negative Breast Cancer (TNBC). However, the association between the over-expression of the Folate Receptor Alpha (FRA) in TNBC and other cancer cells, has led to the possibility that TNBCs might be treated by targeting the FRA with redox selenium covalent Folic Acid conjugates. The present study reports the synthesis of the redox active vitamer, Selenofolate, generating superoxide. Superoxide (O2•-) catalytic generation by Selenofolate was assessed by an in vitro chemiluminescence (CL) assay and by a Dihydroethidium (DHE) in vivo assay. Cytotoxicity of Selenofolate was assessed against the TNBC cell line MDA-MB-468 and an immortalized, mammary epithelial cell line, HME50-5E. Cytotoxicity of Selenofolate was compared to Folic Acid and sodium selenite, in a time and dose dependent manner. Selenofolate and selenite treatments resulted in greater inhibition of MDA-MB-468 cell proliferation than HME50-5E as evaluated by Trypan Blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) metabolic assay and Annexin V apoptosis assays. Folate receptor alpha (FRA) protein expression was assessed by Western blotting, with the experimental results showing that redox active Selenofolate and selenite, but not Folic Acid, was cytotoxic to MDA-MB-468 cells in vitro, suggesting a possible clinical option for treating TNBC and other cancers over-expressing FRA.

7.
J Steroid Biochem Mol Biol ; 183: 1-9, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29733910

RESUMO

Breast cancer​ is one of the most commonly diagnosed cancers in women. Accumulating evidence suggests that cholesterol plays an important role in the development of breast cancer. Even though the mechanistic link between these two factors is not well understood, one possibility is that dysregulated cholesterol metabolism may affect lipid raft and membrane fluidity and can promote tumor development. Current studies have shown oxysterol 27-hydroxycholesterol (27-HC) as a critical regulator of cholesterol and breast cancer pathogenesis. This is supported by the significantly higher expression of CYP27A1 (cytochrome P450, family 27, subfamily A, polypeptide 1) in breast cancers. This enzyme is responsible for 27-HC synthesis from cholesterol. It has been shown that 27-HC can not only increase the proliferation of estrogen receptor (ER)-positive breast cancer cells but also stimulate tumor growth and metastasis in several breast cancer models. This phenomenon is surprising since 27-HC and other oxysterols generally reduce intracellular cholesterol levels by activating the liver X receptors (LXRs). Resolving this paradox will elucidate molecular pathways by which cholesterol, ER, and LXR are connected to breast cancer. These findings will also provide the rationale for evaluating pharmaceutical approaches that manipulate cholesterol or 27-HC synthesis in order to mitigate the impact of cholesterol on breast cancer pathophysiology. In addition to cholesterol, epigenetic changes including non-coding RNAs, and microRNAs, DNA methylation, and histone modifications, have all been shown to control tumorigenesis. The purpose of this review is to discuss the link between altered cholesterol metabolism and epigenetic modification during breast cancer progression.


Assuntos
Neoplasias da Mama/fisiopatologia , Colesterol/metabolismo , Epigênese Genética , Feminino , Humanos , Prognóstico
8.
APL Bioeng ; 2(3): 032002, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31069319

RESUMO

There is growing recognition that cell deformability can play an important role in cancer metastasis and diagnostics. Advancement of methods to characterize cell deformability in a high throughput manner and the capacity to process numerous samples can impact cancer-related applications ranging from analysis of patient samples to discovery of anti-cancer compounds to screening of oncogenes. In this study, we report a microfluidic technique called multi-sample deformability cytometry (MS-DC) that allows simultaneous measurement of flow-induced deformation of cells in multiple samples at single-cell resolution using a combination of on-chip reservoirs, distributed pressure control, and data analysis system. Cells are introduced at rates of O(100) cells per second with a data processing speed of 10 min per sample. To validate MS-DC, we tested more than 50 cell-samples that include cancer cell lines with different metastatic potential and cells treated with several cytoskeletal-intervention drugs. Results from MS-DC show that (i) the cell deformability correlates with metastatic potential for both breast and prostate cancer cells but not with their molecular histotype, (ii) the strongly metastatic breast cancer cells have higher deformability than the weakly metastatic ones; however, the strongly metastatic prostate cancer cells have lower deformability than the weakly metastatic counterparts, and (iii) drug-induced disruption of the actin network, microtubule network, and actomyosin contractility increased cancer cell deformability, but stabilization of the cytoskeletal proteins does not alter deformability significantly. Our study demonstrates the capacity of MS-DC to mechanically phenotype tumor cells simultaneously in many samples for cancer research.

9.
Curr HIV Res ; 14(3): 175-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26957194

RESUMO

BACKGROUND: Similar to other animal viruses, HIV-1 relies on the contributions of the cellular machinery to ensure efficient virus propagation. However, human cells have evolved refined mechanisms to block key steps of the virus life-cycle, thereby suppressing viral replication. These cellular proteins are generally known as restriction factors, and they provide an early antiviral defense. So far, five potent restriction factors have been shown to effectively block HIV and/or SIV replication. These are TRIM5 proteins, SAMHD-1, members of the APOBEC3 (A3) family, Mx2 and Tetherin/BST-2. RESULTS: Here, we review the antiviral mechanisms of these and other antiviral factors, their interaction with the innate immune responses, and how their functions might be exploited to clear and prevent HIV infection. CONCLUSION: Since the majority of vaccine approaches against HIV have failed so far, it is imperative to start looking at alternative strategies for vaccine and therapy development. By better understanding how HIV hijacks the cellular machinery for its own benefit in completing its life-cycle, and how the virus adapts to circumvent our intrinsic immunity, we will be better equipped to design compounds that specifically interrupt virus replication and spread.


Assuntos
Infecções por HIV/etiologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral , Desaminase APOBEC-3G/metabolismo , Animais , Antígenos CD/metabolismo , Fatores de Restrição Antivirais , Proteínas de Transporte/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Resistência a Myxovirus/metabolismo , Proteína 1 com Domínio SAM e Domínio HD , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo
10.
Int J Mol Sci ; 17(2)2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26821020

RESUMO

Recently, estrogen has been reported as putatively inhibiting cancer cell invasion and motility. This information is in direct contrast to the paradigm of estrogen as a tumor promoter. However, data suggests that the effects of estrogen are modulated by the receptor isoform with which it interacts. In order to gain a clearer understanding of the role of estrogen in potentially suppressing breast cancer metastasis, we investigated the regulation of estrogen and its receptor on the downstream target gene, breast cancer metastasis suppressor 1 (BRMS1) in MCF-7, SKBR3, TTU-1 and MDA-MB-231 breast cancer cells. Our results showed that estrogen increased the transcription and expression of BRMS1 in the ERα positive breast cancer cell line, MCF-7. Additionally, the ERα specific agonist PPT also induced the transcription and expression of BRMS1. However, the two remaining estrogen receptor (ER) subtype agonists had no effect on BRMS1 expression. In order to further examine the influence of ERα on BRMS1 expression, ERα expression was knocked down using siRNA (siERα). Western blot analysis showed that siERα reduced estrogen-induced and PPT-induced BRMS1 expression. In summary, this study demonstrates estrogen, via its α receptor, positively regulates the expression of BRMS1, providing new insight into a potential inhibitory effect of estrogen on metastasis suppression.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Metástase Neoplásica , Fenóis/farmacologia , Pirazóis/farmacologia
11.
Biochem Biophys Res Commun ; 466(4): 644-9, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26403970

RESUMO

PURPOSE: Recently, the newly identified embryonic stem cell marker, Zinc finger and SCAN domain containing 4 gene (ZSCAN4), which plays a key role in genomic stability by regulating telomere elongation, was shown to co-localize with TRF1 foci. This suggests that the interaction of ZSCAN4 with TRF1 functions in regulation of telomere elongation in ESC. Based on these studies, we hypothesized that ZSCAN4 binds to TRF1 in cancer cells to function in regulating telomere length. The purpose of this study was to determine whether this interaction occurred across different cell lineage-derived cancers and whether telomerase status impacted this relationship. To that end, telomerase positive cervical cancer cells (HeLa) and breast cancer cells (MCF7), and telomerase negative osteosarcoma cells (SaOS2), were analyzed for ZSCAN4 and TRF1 interactions. RESULTS: Immunocytochemistry demonstrated co-localization of ZSCAN4 and TRF1 to the nucleus. This functional relationship was confirmed using BiFC imaging analysis based on distance in situ. Co-immunoprecipitation and pull-down assay results demonstrated that ZSCAN4 binds with TRF1 in vitro indirectly. All three cell types showed similar results. CONCLUSIONS: In this study, we revealed, for the first time, that ZSCAN4 indirectly interacts with TRF1 (functional association protein) in cancer cells. Furthermore, we show that ZSCAN4 plays an important role independent of telomere maintenance pathways (telomerase positive and ALT) or cell lineage.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias/metabolismo , Telomerase/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Células HeLa , Humanos , Imuno-Histoquímica , Células MCF-7 , Neoplasias/patologia , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Homeostase do Telômero/fisiologia
12.
Environ Sci Technol ; 48(24): 14728-37, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25384208

RESUMO

Pollution is a well-known threat to sea turtles but its impact is poorly understood. In vitro toxicity testing presents a promising avenue to assess and monitor the effects of environmental pollutants in these animals within the legal constraints of their endangered status. Reptilian cell cultures are rare and, in sea turtles, largely derived from animals affected by tumors. Here we describe the full characterization of primary skin fibroblast cell cultures derived from biopsies of multiple healthy loggerhead sea turtles (Caretta caretta), and the subsequent optimization of traditional in vitro toxicity assays to reptilian cells. Characterization included validating fibroblast cells by morphology and immunocytochemistry, and optimizing culture conditions by use of growth curve assays with a fractional factorial experimental design. Two cell viability assays, MTT and lactate dehydrogenase (LDH), and an assay measuring cytochrome P4501A (CYP1A) expression by quantitative PCR were optimized in the characterized cells. MTT and LDH assays confirmed cytotoxicity of perfluorooctanoic acid at 500 µM following 72 and 96 h exposures while CYP1A5 induction was detected after 72 h exposure to 0.1-10 µM benzo[a]pyrene. This research demonstrates the validity of in vitro toxicity testing in sea turtles and highlights the need to optimize mammalian assays to reptilian cells.


Assuntos
Fibroblastos/efeitos dos fármacos , Pele/citologia , Testes de Toxicidade/métodos , Tartarugas , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Benzo(a)pireno/toxicidade , Caprilatos/toxicidade , Sobrevivência Celular , Células Cultivadas , Ecotoxicologia/métodos , Fibroblastos/metabolismo , Fluorocarbonos/toxicidade , Cariotipagem , L-Lactato Desidrogenase/metabolismo , Reação em Cadeia da Polimerase/métodos
13.
Cancer Biol Ther ; 15(8): 1094-105, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24840609

RESUMO

Telomeres are repetitive sequences at the ends of chromosomes protected by DNA binding proteins of the shelterin complex that form capping structures. Through the interaction of shelterin complex-associated proteins, telomere length maintenance is regulated. Recently, the newly identified embryonic stem cell marker, Zinc finger and SCAN domain-containing 4 gene (Zscan4), was shown to be a telomere-associated protein, co-localizing to the shelterin complex. Furthermore, it was shown to play an essential role in genomic stability by regulating telomere elongation. Although it is known that Zscan4 regulates TRF2, POT1b, and Rap1 expression in embryonic stem cells, the relationship and the exact mechanism of action for ZSscan4-mediated telomere maintenance in cancer cells is unknown. In this study, we investigated Zscan4 expression and interactions with Rap1 in telomerase positive (HeLa, MCF7) and ALT pathway (SaOS2, U2OS) cancer cells. Through western, pulldown, siRNA, and overexpression assays we demonstrate, for the first time, that Zscan4 directly associates with Rap1 (physical association protein). Furthermore, by generating truncated versions of Zscan4, we identified its zinc finger domain as the Rap1 binding site. Using bimolecular fluorescence complementation, we further validate this functional interaction in human cancer cells. Our results indicate that Zscan4 functions as a mediator of telomere length through its direct interaction with Rap1, possibly regulating shelterin complex-controlled telomere elongation in both telomerase positive and alternative lengthening of telomere pathways. This direct interaction between Zscan4 and Rap1 may explain how Zscan4 rapidly increases telomere length, yielding important information about the role of these proteins in telomere biology.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Complexo Shelterina , Telomerase/genética , Telômero/metabolismo , Fatores de Transcrição/genética , Dedos de Zinco
14.
BMC Evol Biol ; 13: 276, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24369737

RESUMO

BACKGROUND: New World leaf-nosed bats, Phyllostomidae, represent a lineage of Chiroptera marked by unprecedented morphological/ecological diversity and extensive intergeneric chromosomal reorganization. There are still disagreements regarding their systematic relationships due to morphological convergence among some groups. Their history of karyotypic evolution also remains to be documented. RESULTS: To better understand the evolutionary relationships within Phyllostomidae, we developed chromosome paints from the bat species Macrotus californicus. We tested the potential of these paints as phylogenetic tools by looking for chromosomal signatures in two lineages of nectarivorous phyllostomids whose independent origins have been statistically supported by molecular phylogenies. By examining the chromosomal homologies defined by chromosome painting among two representatives of the subfamily Glossophaginae (Glossophaga soricina and Anoura cultrata) and one species from the subfamily Lonchophyllinae (Lonchophylla concava), we found chromosomal correspondence in regions not previously detected by other comparative cytogenetic techniques. We proposed the corresponding human chromosomal segments for chromosomes of the investigated species and found two syntenic associations shared by G. soricina and A. cultrata. CONCLUSION: Comparative painting with whole chromosome-specific paints of M. californicus demonstrates an extensive chromosomal reorganization within the two lineages of nectarivorous phyllostomids, with a large number of chromosomes shared between M. californicus and G. soricina. We show that the evolution of nectar-feeding bats occurs mainly by reshuffling of chiropteran Evolutionarily Conserved Units (ECUs). Robertsonian fusions/fissions and inversions seem to be important modifiers of phyllostomid karyotypes, and autapomorphic character states are common within species. Macrotus californicus chromosome paints will be a valuable tool for documenting the pattern of karyotypic evolution within Phyllostomidae radiation.


Assuntos
Quirópteros/genética , Coloração Cromossômica/métodos , Cromossomos , Animais , Evolução Biológica , Quirópteros/classificação , Inversão Cromossômica , Humanos , Cariótipo , Filogenia , Sintenia
15.
Cancer Biol Ther ; 1(4): 391-7, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12432253

RESUMO

Studies were conducted to directly test whether the introduction of telomerase protects cancer-prone human mammary epithelial cells from chromosomal instability and spontaneous immortalization. Using a model for Li Fraumeni Syndrome (LFS), infection of human telomerase resulted in maintenance of telomere lengths, extension of in vitro lifespan, and prevention of spontaneous immortalization. In stark contrast to the spontaneously immortalized LFS cells, cells expressing ectopic telomerase displayed a remarkably stable karyotype and even after >150 population doublings, did not express endogenous telomerase. Since the hTERT-infected and spontaneously immortal LFS cells, like the parental cells, exhibit loss of p53 function, our data suggests that telomere shortening is the primary driving force for the genomic instability characteristic of LFS cells, while p53 inactivation is necessary for triggering the spontaneous immortalization event. Collectively, our data indicate that exogenous telomerase prevents chromosomal instability and spontaneous immortalization of LFS cells, suggesting a unique protective role for telomerase in the progression to immortalization.


Assuntos
Transformação Celular Neoplásica , Cromossomos/ultraestrutura , Telomerase/metabolismo , Telomerase/fisiologia , Adulto , Western Blotting , Mama/metabolismo , Aberrações Cromossômicas , Feminino , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Cariotipagem , Síndrome de Li-Fraumeni/genética , Testes de Precipitina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...