Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 154(1): 207-17, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17641918

RESUMO

The variation of plant water use efficiency (WUE) with water availability has two interacting components: a plastic response, evident when individuals of the same genotype are compared (e.g. wet versus dry years), and an interspecific response, evident when different species living in habitats with different water availability are compared. We analysed the WUE of 25 Patagonian species that belong to four life forms (grasses, shrubs, annual herbs and perennial herbs) in relation to the climatic conditions of 2 years and the mean historic water availability experienced by each species. To estimate water availability, we calculated the effective soil water potential (EWP) of each species, based on available information about soil water dynamics, phenology and root system structure. To estimate WUE, we used isotopic discrimination of leaf C (Delta(13)C) and mean annual water vapour difference between leaves and atmosphere (Deltae) measured in situ. For the plastic response, for every species and life form, WUE increased from the dry to the wet year. We hypothesize that photosynthesis was less nutrient limited in the wet than in the dry year, facilitating higher net photosynthesis rates per unit of stomatal conductance in the wet year. For the interspecific response, WUE was lower in species native to drier habitats than in species native to wetter habitats. This response was mostly accounted for by a decrease in Deltae with EWP. Annual herbs, which avoid drought in time (they have the earliest growth cycle), and shrubs, which avoid drought in space (they have the deepest roots), showed the highest EWP and WUE. We conclude that the conventional wisdom which states that the highest WUE occurs within a species during the driest years, and among species in the driest habitats, does not always hold true, and that co-existing life forms drastically differ in water availability and water economy.


Assuntos
Plantas/metabolismo , Solo/análise , Água/química , Água/metabolismo , Argentina , Dipiridamol/análogos & derivados , Estações do Ano
2.
Oecologia ; 115(1-2): 17-25, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28308449

RESUMO

In the Patagonian steppe, years with above-average precipitation (wet years) are characterized by the occurrence of large rainfall events. The objective of this paper was to analyze the ability of shrubs and grasses to use these large events. Shrubs absorb water from the lower layers, grasses from the upper layers, intercepting water that would otherwise reach the layers exploited by shrubs. We hypothesized that both life-forms could use the large rainfalls and that the response of shrubs could be more affected by the presence of grasses than vice versa. We performed a field experiment using a factorial combination of water addition and life-form removal, and repeated it during the warm season of three successive years. The response variables were leaf growth, and soil and plant water potential. Grasses always responded to experimental large rainfall events, and their response was greater in dry than in wet years. Shrubs only used large rainfalls in the driest year, when the soil water potential in the deep layers was low. The presence or absence of one life-form did not modify the response of the other. The magnitude of the increase in soil water potential was much higher in dry than in humid years, suggesting an explanation for the differences among years in the magnitude of the response of shrubs and grasses. We propose that the generally reported poor response of deep-rooted shrubs to summer rainfalls could be because (1) the water is insufficient to reach deep soil layers, (2) the plants are in a dormant phenological status, and/or (3) deep soil layers have a high water potential. The two last situations may result in high deep-drainage losses, one of the most likely explanations for the elsewhere-reported low response of aboveground net primary production to precipitation during wet years.

3.
Oecologia ; 81(4): 501-505, 1989 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28312644

RESUMO

Experiments were conducted in the Patagonian steppe in southern South America to test the following hypotheses: (a) grasses take up most of the water from the upper layers of the soil and utilize frequent and short-duration pulses of water availability; (b) shrubs, on the contrary, take up most of the water from the lower layers of the soil and utilize infrequent and long-duration pulses of water availability. Grasses and shrubs were removed selectively and the performance of plants and the availability of soil resources were monitored. Results supported the overall hypothesis that grasses and shrubs in the Patagonian steppe use mainly different resources. Removal of shrubs did not alter grass production but removal of grasses resulted in a small increase in shrub production which was mediated by an increase in deep soil water and in shrub leaf water potential. The efficiency of utilization of resources freed by grass removal was approximately 25%. Shrubs used water exclusively from lower soil layers. Grasses took up most of the water from upper layers but they were also capable of absorbing water from deep layers. This pattern of water partitioning along with the lack of response in leaf nitrogen to the removal treatments suggested that shrubs may be at a disadvantage to grasses with respect to nutrient capture and led to questions about the role of nutrient recirculation, leaching, and nitrogen fixation in the steppe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA