Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 105(1): 84-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37839695

RESUMO

Clinical verification of adoptively transferred regulatory T cell (Treg) efficacy in transplantation remains challenging. Here, we examined the influence of autologous ex vivo-expanded polyclonal Tregs on kidney graft survival in a clinically relevant non-human primate model. Peripheral blood Tregs were isolated and expanded using artificial antigen presenting cells. Immunosuppression was comprised of tapered tacrolimus and CTLA4 immunoglobulin, in five animals each without or with Treg infusions. Escalating Treg doses were administered 6, 10, 13, 16, 20, 23, 27 and 30 days after transplant. Infused Tregs were monitored for Treg signature, anti-apoptotic (Bcl-2) and proliferation (Ki67) marker expression. Treg infusions prolonged median graft survival time significantly from 35 to 70 days. Treg marker (Ki67 and Bcl-2) expression by infused Tregs diminished after their infusion but remained comparable to that of circulating native Tregs. No major changes in circulating donor-reactive T cell responses or total Treg percentages, or in graft-infiltrating T cell subsets were observed with Treg infusion. However, Treg infusion was associated with significant increases in CD163 expression by circulating HLA-DR+ myeloid cells and elevated levels of circulating soluble CD163. Further, graft-infiltrating CD163+ cells were increased with Treg infusion. Thus, multiple Treg infusions were associated with M2-like myeloid cell enhancement that may mediate immunomodulatory, anti-inflammatory and graft reparative effects.


Assuntos
Primatas , Linfócitos T Reguladores , Animais , Antígeno Ki-67/metabolismo , Rim , Aloenxertos , Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
2.
Hepatology ; 77(2): 355-366, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35819312

RESUMO

BACKGROUND AND AIMS: In otherwise near-normal appearing biopsies by routine light microscopy, next-generation pathology (NGP) detected close pairings (immune pairs; iPAIRs) between lymphocytes and antigen-presenting cells (APCs) that predicted immunosuppression weaning failure in pediatric liver transplant (LTx) recipients (Immunosuppression Withdrawal for Stable Pediatric Liver Transplant Recipients [iWITH], NCT01638559). We hypothesized that NGP-detected iPAIRs enrich for true immune synapses, as determined by nuclear shape metrics, intercellular distances, and supramolecular activation complex (SMAC) formation. APPROACH AND RESULTS: Intralobular iPAIRs (CD45 high lymphocyte-major histocompatibility complex II + APC pairs; n = 1167, training set) were identified at low resolution from multiplex immunohistochemistry-stained liver biopsy slides from several multicenter LTx immunosuppression titration clinical trials (iWITH; NCT02474199 (Donor Alloantigen Reactive Tregs (darTregs) for Calcineurin Inhibitor (CNI) Reduction (ARTEMIS); Prospective Longitudinal Study of iWITH Screen Failures Secondary to Histopathology). After excluding complex multicellular aggregates, high-resolution imaging was used to examine immune synapse formation ( n = 998). By enriching for close intranuclear lymphocyte-APC distance (mean: 0.713 µm) and lymphocyte nuclear flattening (mean ferret diameter: 2.1), SMAC formation was detected in 29% of iPAIR-engaged versus 9.5% of unpaired lymphocytes. Integration of these morphometrics enhanced NGP detection of immune synapses (ai-iSYN). Using iWITH preweaning biopsies from eligible patients ( n = 53; 18 tolerant, 35 nontolerant; testing set), ai-iSYN accurately predicted (87.3% accuracy vs. 81.4% for iPAIRs; 100% sensitivity, 75% specificity) immunosuppression weaning failure. This confirmed the presence and importance of intralobular immune synapse formation in liver allografts. Stratification of biopsy mRNA expression data by immune synapse quantity yielded the top 20 genes involved in T cell activation and immune synapse formation and stability. CONCLUSIONS: NGP-detected immune synapses (subpathological rejection) in LTx patients prior to immunosuppression reduction suggests that NGP-detected (allo)immune activity usefulness for titration of immunosuppressive therapy in various settings.


Assuntos
Furões , Linfócitos T , Humanos , Animais , Criança , Estudos Prospectivos , Estudos Longitudinais , Fígado , Células Apresentadoras de Antígenos , Aloenxertos , Rejeição de Enxerto/diagnóstico , Imunossupressores/uso terapêutico
3.
J Clin Invest ; 127(6): 2106-2117, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28504655

RESUMO

Following migration of primordial germ cells to the genital ridge, oogonia undergo several rounds of mitotic division and enter meiosis at approximately E13.5. Most oocytes arrest in the dictyate (diplotene) stage of meiosis circa E18.5. The genes necessary to drive oocyte differentiation in parallel with meiosis are unknown. Here, we have investigated whether expression of spermatogenesis and oogenesis bHLH transcription factor 1 (Sohlh1) and Sohlh2 coordinates oocyte differentiation within the embryonic ovary. We found that SOHLH2 protein was expressed in the mouse germline as early as E12.5 and preceded SOHLH1 protein expression, which occurred circa E15.5. SOHLH1 protein appearance at E15.5 correlated with SOHLH2 translocation from the cytoplasm into the nucleus and was dependent on SOHLH1 expression. NOBOX oogenesis homeobox (NOBOX) and LIM homeobox protein 8 (LHX8), two important regulators of postnatal oogenesis, were coexpressed with SOHLH1. Single deficiency of Sohlh1 or Sohlh2 disrupted the expression of LHX8 and NOBOX in the embryonic gonad without affecting meiosis. Sohlh1-KO infertility was rescued by conditional expression of the Sohlh1 transgene after the onset of meiosis. However, Sohlh1 or Sohlh2 transgene expression could not rescue Sohlh2-KO infertility due to a lack of Sohlh1 or Sohlh2 expression in rescued mice. Our results indicate that Sohlh1 and Sohlh2 are essential regulators of oocyte differentiation but do not affect meiosis I.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Meiose , Oócitos/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Desenvolvimento Embrionário , Feminino , Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos Transgênicos , Regiões Promotoras Genéticas , Caracteres Sexuais , Fatores de Transcrição/metabolismo , Ativação Transcricional
4.
PLoS Genet ; 12(6): e1006128, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27341508

RESUMO

TAF4b is a gonadal-enriched subunit of the general transcription factor TFIID that is implicated in promoting healthy ovarian aging and female fertility in mice and humans. To further explore the potential mechanism of TAF4b in promoting ovarian follicle development, we analyzed global gene expression at multiple time points in the human fetal ovary. This computational analysis revealed coordinate expression of human TAF4B and critical regulators and effectors of meiosis I including SYCP3, YBX2, STAG3, and DAZL. To address the functional relevance of this analysis, we turned to the embryonic Taf4b-deficient mouse ovary where, for the first time, we demonstrate, severe deficits in prophase I progression as well as asynapsis in Taf4b-deficient oocytes. Accordingly, TAF4b occupies the proximal promoters of many essential meiosis and oogenesis regulators, including Stra8, Dazl, Figla, and Nobox, and is required for their proper expression. These data reveal a novel TAF4b function in regulating a meiotic gene expression program in early mouse oogenesis, and support the existence of a highly conserved TAF4b-dependent gene regulatory network promoting early oocyte development in both mice and women.


Assuntos
Meiose/genética , Oócitos/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Animais , Feminino , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Masculino , Camundongos , Oogênese/genética , Ovário/metabolismo , Regiões Promotoras Genéticas/genética
5.
BMC Biol ; 13: 39, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26076587

RESUMO

BACKGROUND: The early stages of ovarian follicle formation-beginning with the breakdown of germ cell cysts and continuing with the formation of primordial follicles and transition to primary and secondary follicles-are critical in determining reproductive life span and fertility. Previously, we discovered that global knockouts of germ cell-specific transcriptional co-regulators Sohlh1, Sohlh2, Lhx8, and Nobox, cause rapid oocyte loss and ovarian failure. Also factors such as Nobox and Sohlh1 are associated with human premature ovarian failure. In this study, we developed a conditional knockout of Lhx8 to study oocyte-specific pathways in postnatal folliculogenesis. RESULTS: The conditional deficiency of Lhx8 in the oocytes of primordial follicles leads to massive primordial oocyte activation, in part, by indirectly interacting with the PI3K-AKT pathway, as shown by synergistic effects on FOXO3 nucleocytoplasmic translocation and rpS6 activation. However, LHX8 does not directly regulate members of the PI3K-AKT pathway; instead, we show that LHX8 represses Lin28a expression, a known regulator of mammalian metabolism and of the AKT/mTOR pathway. LHX8 can bind to the Lin28a promoter, and the depletion of Lin28a in Lhx8-deficient oocytes partially suppresses primordial oocyte activation. Moreover, unlike the PI3K-AKT pathway, LHX8 is critical beyond primordial follicle activation, and blocks the primary to secondary follicle transition. CONCLUSIONS: Our results indicate that the LHX8-LIN28A pathway is essential in the earliest stages of primordial follicle activation, and LHX8 is an important oocyte-specific transcription factor in the ovary for regulating postnatal folliculogenesis.


Assuntos
Proteínas com Homeodomínio LIM/metabolismo , Oócitos/citologia , Folículo Ovariano/fisiologia , Folículo Ovariano/ultraestrutura , Fatores de Transcrição/metabolismo , Animais , Feminino , Proteínas com Homeodomínio LIM/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...