Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell Stress Chaperones ; 29(2): 338-348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521349

RESUMO

The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1's ATPase, indicate the presence of yet uncharacterized intramolecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an autoregulatory role to these intramolecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1-4 chaperones that are the most abundant Hsp70s in the yeast cytosol.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligação Proteica , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Cell Stress Chaperones ; 29(1): 21-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320449

RESUMO

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Polônia , Proteínas de Choque Térmico HSP40/metabolismo
3.
Cell Stress Chaperones ; 29(1): 143-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38311120

RESUMO

Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.


Assuntos
Proteínas de Choque Térmico , Medicina , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Resposta ao Choque Térmico/genética , Biologia
4.
Plant Methods ; 19(1): 56, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291595

RESUMO

BACKGROUND: Global warming is a major challenge for plant survival and growth. Understanding the molecular mechanisms by which higher plants sense and adapt to upsurges in the ambient temperature is essential for developing strategies to enhance plant tolerance to heat stress. Here, we designed a heat-responsive Arabidopsis thaliana reporter line that allows an in-depth investigation of the mechanisms underlying the accumulation of protective heat-shock proteins (HSPs) in response to high temperature. METHODS: A transgenic Arabidopsis thaliana reporter line named "Heat-Inducible Bioluminescence And Toxicity" (HIBAT) was designed to express from a conditional heat-inducible promoter, a fusion gene encoding for nanoluciferase and D-amino acid oxidase, whose expression is toxic in the presence of D-valine. HIBAT seedlings were exposed to different heat treatments in presence or absence of D-valine and analyzed for survival rate, bioluminescence and HSP gene expression. RESULTS: Whereas at 22 °C, HIBAT seedlings grew unaffected by D-valine, and all survived iterative heat treatments without D-valine, 98% died following heat treatments on D-valine. The HSP17.3B promoter was highly specific to heat as it remained unresponsive to various plant hormones, Flagellin, H2O2, osmotic stress and high salt. RNAseq analysis of heat-treated HIBAT seedlings showed a strong correlation with expression profiles of two wild type lines, confirming that HIBAT does not significantly differ from its Col-0 parent. Using HIBAT, a forward genetic screen revealed candidate loss-of-function mutants, apparently defective either at accumulating HSPs at high temperature or at repressing HSP accumulation at non-heat-shock temperatures. CONCLUSION: HIBAT is a valuable candidate tool to identify Arabidopsis mutants defective in the response to high temperature stress. It opens new avenues for future research on the regulation of HSP expression and for understanding the mechanisms of plant acquired thermotolerance.

6.
Cell Stress Chaperones ; 28(1): 1-9, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602710

RESUMO

The Second International Symposium on Cellular and Organismal Stress Responses took place virtually on September 8-9, 2022. This meeting was supported by the Cell Stress Society International (CSSI) and organized by Patricija Van Oosten-Hawle and Andrew Truman (University of North Carolina at Charlotte, USA) and Mehdi Mollapour (SUNY Upstate Medical University, USA). The goal of this symposium was to continue the theme from the initial meeting in 2020 by providing a platform for established researchers, new investigators, postdoctoral fellows, and students to present and exchange ideas on various topics on cellular stress and chaperones. We will summarize the highlights of the meeting here and recognize those that received recognition from the CSSI.


Assuntos
Chaperonas Moleculares , Estresse Fisiológico , Humanos , Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares/fisiologia , Estresse Fisiológico/fisiologia
7.
Nat Chem Biol ; 19(2): 198-205, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266349

RESUMO

Detailed understanding of the mechanism by which Hsp70 chaperones protect cells against protein aggregation is hampered by the lack of a comprehensive characterization of the aggregates, which are typically heterogeneous. Here we designed a reporter chaperone substrate, MLucV, composed of a stress-labile luciferase flanked by stress-resistant fluorescent domains, which upon denaturation formed a discrete population of small aggregates. Combining Förster resonance energy transfer and enzymatic activity measurements provided unprecedented details on the aggregated, unfolded, Hsp70-bound and native MLucV conformations. The Hsp70 mechanism first involved ATP-fueled disaggregation and unfolding of the stable pre-aggregated substrate, which stretched MLucV beyond simply unfolded conformations, followed by native refolding. The ATP-fueled unfolding and refolding action of Hsp70 on MLucV aggregates could accumulate native MLucV species under elevated denaturing temperatures highly adverse to the native state. These results unambiguously exclude binding and preventing of aggregation from the non-equilibrium mechanism by which Hsp70 converts stable aggregates into metastable native proteins.


Assuntos
Proteínas de Choque Térmico HSP70 , Dobramento de Proteína , Proteínas de Choque Térmico HSP70/química , Chaperonas Moleculares/química , Luciferases/metabolismo , Trifosfato de Adenosina , Desnaturação Proteica , Desdobramento de Proteína
8.
Phys Chem Chem Phys ; 24(47): 29176-29185, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444947

RESUMO

Partially charged chiral molecules act as spin filters, with preference for electron transport toward one type of spin ("up" or "down"), depending on their handedness. This effect is named the chiral induced spin selectivity (CISS) effect. A consequence of this phenomenon is spin polarization concomitant with electric polarization in chiral molecules. These findings were shown by adsorbing chiral molecules on magnetic surfaces and investigating the spin-exchange interaction between the surface and the chiral molecule. This field of study was developed using artificial chiral molecules. Here we used such magnetic surfaces to explore the importance of the intrinsic chiral properties of proteins in determining their stability. First, proteins were adsorbed on paramagnetic and ferromagnetic nanoparticles in a solution, and subsequently urea was gradually added to induce unfolding. The structural stability of proteins was assessed using two methods: bioluminescence measurements used to monitor the activity of the Luciferase enzyme, and fast spectroscopy detecting the distance between two chromophores implanted at the termini of a Barnase core. We found that interactions with magnetic materials altered the structural and functional resilience of the natively folded proteins, affecting their behavior under varying mild denaturing conditions. Minor structural disturbances at low urea concentrations were impeded in association with paramagnetic nanoparticles, whereas at higher urea concentrations, major structural deformation was hindered in association with ferromagnetic nanoparticles. These effects were attributed to spin exchange interactions due to differences in the magnetic imprinting properties of each type of nanoparticle. Additional measurements of proteins on macroscopic magnetic surfaces support this conclusion. The results imply a link between internal spin exchange interactions in a folded protein and its structural and functional integrity on magnetic surfaces. Together with the accumulating knowledge on CISS, our findings suggest that chirality and spin exchange interactions should be considered as additional factors governing protein structures.


Assuntos
Imãs , Nanopartículas , Estabilidade Proteica , Eletricidade , Transporte de Elétrons
10.
Trends Biochem Sci ; 47(10): 824-838, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660289

RESUMO

Climate change is increasingly affecting the quality of life of organisms on Earth. More frequent, extreme, and lengthy heat waves are contributing to the sixth mass extinction of complex life forms in the Earth's history. From an anthropocentric point of view, global warming is a major threat to human health because it also compromises crop yields and food security. Thus, achieving agricultural productivity under climate change calls for closer examination of the molecular mechanisms of heat-stress resistance in model and crop plants. This requires a better understanding of the mechanisms by which plant cells can sense rising temperatures and establish effective molecular defenses, such as molecular chaperones and thermoprotective metabolites, as reviewed here, to survive extreme diurnal variations in temperature and seasonal heat waves.


Assuntos
Temperatura Alta , Qualidade de Vida , Mudança Climática , Resposta ao Choque Térmico , Humanos
11.
J Mol Biol ; 434(13): 167627, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597550

RESUMO

Natural evolution is driven by random mutations that improve fitness. In vitro evolution mimics this process, however, on a short time-scale and is driven by the given bait. Here, we used directed in vitro evolution of a random mutant library of Uracil glycosylase (eUNG) displayed on yeast surface to select for binding to chaperones GroEL, DnaK + DnaJ + ATP (DnaKJ) or E. coli cell extract (CE), using binding to the eUNG inhibitor Ugi as probe for native fold. The CE selected population was further divided to Ugi binders (+U) or non-binders (-U). The aim here was to evaluate the sequence space and physical state of the evolved protein binding the different baits. We found that GroEL, DnaKJ and CE-U select and enrich for mutations causing eUNG to misfold, with the three being enriched in mutations in buried and conserved positions, with a tendency to increase positive charge. Still, each selection had its own trajectory, with GroEL and CE-U selecting mutants highly sensitive to protease cleavage while DnaKJ selected partially structured misfolded species with a tendency to refold, making them less sensitive to proteases. More general, our results show that GroEL has a higher tendency to purge promiscuous misfolded protein mutants from the system, while DnaKJ binds misfolding-prone mutant species that are, upon chaperone release, more likely to natively refold. CE-U shares some of the properties of GroEL- and DnaKJ-selected populations, while harboring also unique properties that can be explained by the presence of additional chaperones in CE, such as Trigger factor, HtpG and ClpB.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Uracila-DNA Glicosidase/metabolismo , Proteínas de Bactérias/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Dobramento de Proteína
12.
Trends Plant Sci ; 27(7): 630-632, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35361524

RESUMO

The 2021 Nobel prize was awarded for the discovery of the animal thermosensory channel TRPV1. We highlight notable shared features with the higher plant thermosensory channel CNGC2/4. Both channels respond to temperature-induced changes in plasma membrane fluidity, leading to hyperphosphorylation of the HSF1 transcription factor via a specific heat-signaling cascade.


Assuntos
Transdução de Sinais , Fatores de Transcrição , Animais , Membrana Celular/metabolismo , Temperatura Alta , Humanos , Fenômenos Fisiológicos Vegetais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Front Mol Biosci ; 8: 768888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778379

RESUMO

Life is a non-equilibrium phenomenon. Owing to their high free energy content, the macromolecules of life tend to spontaneously react with ambient oxygen and water and turn into more stable inorganic molecules. A similar thermodynamic picture applies to the complex shapes of proteins: While a polypeptide is emerging unfolded from the ribosome, it may spontaneously acquire secondary structures and collapse into its functional native conformation. The spontaneity of this process is evidence that the free energy of the unstructured state is higher than that of the structured native state. Yet, under stress or because of mutations, complex polypeptides may fail to reach their native conformation and form instead thermodynamically stable aggregates devoid of biological activity. Cells have evolved molecular chaperones to actively counteract the misfolding of stress-labile proteins dictated by equilibrium thermodynamics. HSP60, HSP70 and HSP100 can inject energy from ATP hydrolysis into the forceful unfolding of stable misfolded structures in proteins and convert them into unstable intermediates that can collapse into the native state, even under conditions inauspicious for that state. Aggregates and misfolded proteins may also be forcefully unfolded and degraded by chaperone-gated endo-cellular proteases, and in eukaryotes also by chaperone-mediated autophagy, paving the way for their replacement by new, unaltered functional proteins. The greater energy cost of degrading and replacing a polypeptide, with respect to the cost of its chaperone-mediated repair represents a thermodynamic dilemma: some easily repairable proteins are better to be processed by chaperones, while it can be wasteful to uselessly try recover overly compromised molecules, which should instead be degraded and replaced. Evolution has solved this conundrum by creating a host of unfolding chaperones and degradation machines and by tuning their cellular amounts and activity rates.

14.
Front Mol Biosci ; 8: 653073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937334

RESUMO

In eukaryotes, the 90-kDa heat shock proteins (Hsp90s) are profusely studied chaperones that, together with 70-kDa heat shock proteins (Hsp70s), control protein homeostasis. In bacteria, however, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains poorly characterized. To uncover physiological processes that depend on HtpG and DnaK, we performed comparative quantitative proteomic analyses of insoluble and total protein fractions from unstressed wild-type (WT) Escherichia coli and from knockout mutants ΔdnaKdnaJ (ΔKJ), ΔhtpG (ΔG), and ΔdnaKdnaJΔhtpG (ΔKJG). Whereas the ΔG mutant showed no detectable proteomic differences with wild-type, ΔKJ expressed more chaperones, proteases and ribosomes and expressed dramatically less metabolic and respiratory enzymes. Unexpectedly, we found that the triple mutant ΔKJG showed higher levels of metabolic and respiratory enzymes than ΔKJ, suggesting that bacterial Hsp90 mediates the degradation of aggregation-prone Hsp70-Hsp40 substrates. Further in vivo experiments suggest that such Hsp90-mediated degradation possibly occurs through the HslUV protease.

15.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001607

RESUMO

Across the Tree of Life (ToL), the complexity of proteomes varies widely. Our systematic analysis depicts that from the simplest archaea to mammals, the total number of proteins per proteome expanded ∼200-fold. Individual proteins also became larger, and multidomain proteins expanded ∼50-fold. Apart from duplication and divergence of existing proteins, completely new proteins were born. Along the ToL, the number of different folds expanded ∼5-fold and fold combinations ∼20-fold. Proteins prone to misfolding and aggregation, such as repeat and beta-rich proteins, proliferated ∼600-fold and, accordingly, proteins predicted as aggregation-prone became 6-fold more frequent in mammalian compared with bacterial proteomes. To control the quality of these expanding proteomes, core chaperones, ranging from heat shock proteins 20 (HSP20s) that prevent aggregation to HSP60, HSP70, HSP90, and HSP100 acting as adenosine triphosphate (ATP)-fueled unfolding and refolding machines, also evolved. However, these core chaperones were already available in prokaryotes, and they comprise ∼0.3% of all genes from archaea to mammals. This challenge-roughly the same number of core chaperones supporting a massive expansion of proteomes-was met by 1) elevation of messenger RNA (mRNA) and protein abundances of the ancient generalist core chaperones in the cell, and 2) continuous emergence of new substrate-binding and nucleotide-exchange factor cochaperones that function cooperatively with core chaperones as a network.


Assuntos
Evolução Molecular , Proteínas de Choque Térmico HSP70/genética , Agregados Proteicos/genética , Proteoma/genética , Trifosfato de Adenosina/metabolismo , Animais , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Fungos/genética , Fungos/metabolismo , Expressão Gênica , Ontologia Genética , Proteínas de Choque Térmico HSP70/metabolismo , Mamíferos , Anotação de Sequência Molecular , Filogenia , Plantas/genética , Plantas/metabolismo , Dobramento de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Haematologica ; 106(6): 1519-1534, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33832207

RESUMO

Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Animais , Eritroblastos , Eritrócitos , Eritropoese , Humanos
17.
ACS Chem Biol ; 16(4): 775-785, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33739813

RESUMO

ClpB is a tightly regulated AAA+ disaggregation machine. Each ClpB molecule is composed of a flexibly attached N-terminal domain (NTD), an essential middle domain (MD) that activates the machine by tilting, and two nucleotide-binding domains. The NTD is not well-characterized structurally and is commonly considered to serve as a dispensable substrate-binding domain. Here, we use single-molecule FRET spectroscopy to directly monitor the real-time dynamics of ClpB's NTD and reveal its unexpected autoinhibitory function. We find that the NTD fluctuates on the microsecond time scale, and these dynamics result in steric hindrance that limits the conformational space of the MD to restrict its tilting. This leads to significantly inhibited ATPase and disaggregation activities of ClpB, an effect that is alleviated upon binding of a substrate protein or the cochaperone DnaK. This entropic inhibition mechanism, which is mediated by ultrafast motions of the NTD and is not dependent on any strong interactions, might be common in related ATP-dependent proteases and other multidomain proteins to ensure their fast and reversible activation.


Assuntos
Endopeptidase Clp/química , Adenosina Trifosfatases/antagonistas & inibidores , Transferência Ressonante de Energia de Fluorescência , Conformação Proteica , Especificidade por Substrato
18.
Plant Cell Environ ; 44(7): 2117-2133, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33314263

RESUMO

At dawn of a scorching summer day, land plants must anticipate upcoming extreme midday temperatures by timely establishing molecular defences that can keep heat-labile membranes and proteins functional. A gradual morning pre-exposure to increasing sub-damaging temperatures induces heat-shock proteins (HSPs) that are central to the onset of plant acquired thermotolerance (AT). To gain knowledge on the mechanisms of AT in the model land plant Physcomitrium patens, we used label-free LC-MS/MS proteomics to quantify the accumulated and depleted proteins before and following a mild heat-priming treatment. High protein crowding is thought to promote protein aggregation, whereas molecular chaperones prevent and actively revert aggregation. Yet, we found that heat priming (HP) did not accumulate HSP chaperones in chloroplasts, although protein crowding was six times higher than in the cytosol. In contrast, several HSP20s strongly accumulated in the cytosol, yet contributing merely 4% of the net mass increase of heat-accumulated proteins. This is in poor concordance with their presumed role at preventing the aggregation of heat-labile proteins. The data suggests that under mild HP unlikely to affect protein stability. Accumulating HSP20s leading to AT, regulate the activity of rare and specific signalling proteins, thereby preventing cell death under noxious heat stress.


Assuntos
Bryopsida/fisiologia , Proteínas de Plantas/metabolismo , Termotolerância/fisiologia , Bryopsida/citologia , Cromatografia Líquida , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteômica , Espectrometria de Massas em Tandem , Fluxo de Trabalho
19.
Front Med (Lausanne) ; 7: 564170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33043037

RESUMO

Mortality in COVID-19 patients predominantly results from an acute respiratory distress syndrome (ARDS), in which lungs alveolar cells undergo programmed cell death. Mortality in a sepsis-induced ARDS rat model is reduced by adenovirus over-expression of the HSP70 chaperone. A natural rise of body temperature during mild fever can naturally accumulate high cellular levels of HSP70 that can arrest apoptosis and protect alveolar lung cells from inflammatory damages. However, beyond 1-2 h of fever, no HSP70 is being further produced and a decreased in body temperature required to the restore cell's ability to produce more HSP70 in a subsequent fever cycle. We suggest that antipyretics may be beneficial in COVID-19 patients subsequent to several hours of mild (<38.8°C) advantageous fever, allowing lung cells to accumulate protective HSP70 against damages from the inflammatory response to the virus SARS-CoV-2. With age, the ability to develop fever and accumulate HSP70 decreases. This could be ameliorated, when advisable to do so, by thermotherapies and/or physical training.

20.
FEBS J ; 287(4): 671-694, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31423733

RESUMO

In eukaryotes, Hsp110s are unambiguous cognates of the Hsp70 chaperones, in primary sequence, domain organization, and structure. Hsp110s function as nucleotide exchange factors (NEFs) for the Hsp70s although their apparent loss of Hsp70-like chaperone activity, nature of interdomain communication, and breadth of domain functions are still puzzling. Here, by combining single-molecule FRET, small angle X-ray scattering measurements (SAXS), and MD simulation, we show that yeast Hsp110, Sse1 lacks canonical Hsp70-like interdomain allostery. However, the protein exhibits unique noncanonical conformational changes within its domains. Sse1 maintains an open-lid substrate-binding domain (SBD) in close contact with its nucleotide-binding domain (NBD), irrespective of its ATP hydrolysis status. To further appreciate such ATP-hydrolysis-independent exhaustive interaction between two domains of Hsp110s, NBD-SBD chimera was constructed between Hsp110 (Sse1) and Hsp70 (Ssa1). In Sse1/Ssa1 chimera, we observed undocking of two domains leading to complete loss of NEF activity of Sse1. Interestingly, chimeric proteins exhibited significantly enhanced ATPase rate of Sse1-NBD compared to wild-type protein, implying that intrinsic ATPase activity of the protein remains mostly repressed. Apart from repressing the high ATPase activity of its NBD, interactions between two domains confer thermal stability to Sse1 and play critical role in the (co)chaperoning function of Sse1 in Ssa1-mediated disaggregation activity. Altogether, Sse1 exhibits a unique interdomain interaction, which is essential for its NEF activity, suppression of high intrinsic ATPase activity, co-chaperoning activity in disaggregase machinery, and stability of the protein.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Choque Térmico HSP70/química , Proteínas Mutantes Quiméricas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Hidrólise , Simulação de Dinâmica Molecular , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...