Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 7471-7479, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405499

RESUMO

Computational prediction of molecule-protein interactions has been key for developing new molecules to interact with a target protein for therapeutics development. Previous work includes two independent streams of approaches: (1) predicting protein-protein interactions (PPIs) between naturally occurring proteins and (2) predicting binding affinities between proteins and small-molecule ligands [also known as drug-target interaction (DTI)]. Studying the two problems in isolation has limited the ability of these computational models to generalize across the PPI and DTI tasks, both of which ultimately involve noncovalent interactions with a protein target. In this work, we developed Equivariant Graph of Graphs neural Network (EGGNet), a geometric deep learning (GDL) framework, for molecule-protein binding predictions that can handle three types of molecules for interacting with a target protein: (1) small molecules, (2) synthetic peptides, and (3) natural proteins. EGGNet leverages a graph of graphs (GoG) representation constructed from the molecular structures at atomic resolution and utilizes a multiresolution equivariant graph neural network to learn from such representations. In addition, EGGNet leverages the underlying biophysics and makes use of both atom- and residue-level interactions, which improve EGGNet's ability to rank candidate poses from blind docking. EGGNet achieves competitive performance on both a public protein-small-molecule binding affinity prediction task (80.2% top 1 success rate on CASF-2016) and a synthetic protein interface prediction task (88.4% area under the precision-recall curve). We envision that the proposed GDL framework can generalize to many other protein interaction prediction problems, such as binding site prediction and molecular docking, helping accelerate protein engineering and structure-based drug development.

2.
Sci Rep ; 12(1): 6832, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477726

RESUMO

Proteins perform many essential functions in biological systems and can be successfully developed as bio-therapeutics. It is invaluable to be able to predict their properties based on a proposed sequence and structure. In this study, we developed a novel generalizable deep learning framework, LM-GVP, composed of a protein Language Model (LM) and Graph Neural Network (GNN) to leverage information from both 1D amino acid sequences and 3D structures of proteins. Our approach outperformed the state-of-the-art protein LMs on a variety of property prediction tasks including fluorescence, protease stability, and protein functions from Gene Ontology (GO). We also illustrated insights into how a GNN prediction head can inform the fine-tuning of protein LMs to better leverage structural information. We envision that our deep learning framework will be generalizable to many protein property prediction problems to greatly accelerate protein engineering and drug development.


Assuntos
Aprendizado Profundo , Sequência de Aminoácidos , Idioma , Redes Neurais de Computação , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...