Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 42(4): e27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24265225

RESUMO

Chemical landscape of natural RNA species is decorated with the large number of modified nucleosides. Some of those could easily be detected by reverse transcription, while others permit only high-performance liquid chromatography or mass-spectrometry detection. Presence of m(6)A nucleoside at a particular position of long RNA molecule is challenging to observe. Here we report an easy and high-throughput method for detection of m(6)A nucleosides in RNA based on high-resolution melting analysis. The method relies on the previous knowledge of the modified nucleoside position at a particular place of RNA and allows rapid screening for conditions or genes necessary for formation of that modification.


Assuntos
Adenosina/química , Hibridização de Ácido Nucleico/métodos , RNA/química , Adenosina/análise , Adenosina/metabolismo , Células HEK293 , Humanos , Metilação , Metiltransferases/genética , Sondas de Oligonucleotídeos , RNA/metabolismo
2.
RNA ; 18(9): 1725-34, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22847818

RESUMO

The ribosomal RNA (rRNA) of Escherichia coli contains 24 methylated residues. A set of 22 methyltransferases responsible for modification of 23 residues has been described previously. Herein we report the identification of the yhiR gene as encoding the enzyme that modifies the 23S rRNA nucleotide A2030, the last methylated rRNA nucleotide whose modification enzyme was not known. YhiR prefers protein-free 23S rRNA to ribonucleoprotein particles containing only part of the 50S subunit proteins and does not methylate the assembled 50S subunit. We suggest renaming the yhiR gene to rlmJ according to the rRNA methyltransferase nomenclature. The phenotype of yhiR knockout gene is very mild under various growth conditions and at the stationary phase, except for a small growth advantage at anaerobic conditions. Only minor changes in the total E. coli proteome could be observed in a cell devoid of the 23S rRNA nucleotide A2030 methylation.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Ribossômico 23S/metabolismo , Técnicas de Inativação de Genes , Metilação , Fenótipo , Proteômica , RNA Ribossômico 23S/química
3.
Nucleic Acids Res ; 40(12): 5694-705, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22411911

RESUMO

Modification of ribosomal RNA is ubiquitous among living organisms. Its functional role is well established for only a limited number of modified nucleotides. There are examples of rRNA modification involvement in the gene expression regulation in the cell. There is a need for large data set analysis in the search for potential functional partners for rRNA modification. In this study, we extracted phylogenetic profile, genome neighbourhood, co-expression and phenotype profile and co-purification data regarding Escherichia coli rRNA modification enzymes from public databases. Results were visualized as graphs using Cytoscape and analysed. Majority linked genes/proteins belong to translation apparatus. Among co-purification partners of rRNA modification enzymes are several candidates for experimental validation. Phylogenetic profiling revealed links of pseudouridine synthetases with RF2, RsmH with translation factors IF2, RF1 and LepA and RlmM with RdgC. Genome neighbourhood connections revealed several putative functionally linked genes, e.g. rlmH with genes coding for cell wall biosynthetic proteins and others. Comparative analysis of expression profiles (Gene Expression Omnibus) revealed two main associations, a group of genes expressed during fast growth and association of rrmJ with heat shock genes. This study might be used as a roadmap for further experimental verification of predicted functional interactions.


Assuntos
Escherichia coli/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/metabolismo , Mineração de Dados , Enzimas/genética , Enzimas/isolamento & purificação , Enzimas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Genes Bacterianos , Genoma Bacteriano , Fenótipo
4.
Biochimie ; 92(7): 914-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20347003

RESUMO

Preparation of pure ribosomal subunits carrying lethal mutations is necessary for studying every essential functional region of ribosomal RNA. Affinity purification via a tag, inserted into rRNA proved to be procedure of choice for purification of such ribosomal subunits. Here we describe fast and simple purification method for the 30S ribosomal subunits using affinity chromatography. Streptavidin-binding tag was inserted into functionally neutral helix 33a of the 16 S rRNA from Escherichia coli. Tagged ribosomal subunits were shown to be expressed in E. coli and could be purified. Purified subunits with affinity tag behave similarly to the wild type subunits in association with the 50S subunits, toe-printing and tRNA binding assays. Tagged 30S subunits could support cell growth in the strain lacking wild type 30S subunits and only marginally change the growth rate of bacteria. The presented purification method is thus suitable for further use in purification of 30S subunits carrying any lethal mutations.


Assuntos
Cromatografia de Afinidade/métodos , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Estreptavidina/metabolismo , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Escherichia coli/citologia , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Subunidades Ribossômicas Menores de Bactérias/química
5.
RNA ; 15(6): 1134-41, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19383770

RESUMO

Transfer RNA is highly modified. Nucleotide 37 of the anticodon loop is represented by various modified nucleotides. In Escherichia coli, the valine-specific tRNA (cmo(5)UAC) contains a unique modification, N(6)-methyladenosine, at position 37; however, the enzyme responsible for this modification is unknown. Here we demonstrate that the yfiC gene of E. coli encodes an enzyme responsible for the methylation of A37 in tRNA(1)(Val). Inactivation of yfiC gene abolishes m(6)A formation in tRNA(1)(Val), while expression of the yfiC gene from a plasmid restores the modification. Additionally, unmodified tRNA(1)(Val) can be methylated by recombinant YfiC protein in vitro. Although the methylation of m(6)A in tRNA(1)(Val) by YfiC has little influence on the cell growth under standard conditions, the yfiC gene confers a growth advantage under conditions of osmotic and oxidative stress.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Genes Bacterianos , Metiltransferases/genética , RNA de Transferência de Valina/metabolismo , tRNA Metiltransferases/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Metilação , Metiltransferases/metabolismo , Estresse Oxidativo , RNA de Transferência de Valina/genética , tRNA Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA