Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1077301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818838

RESUMO

Background: RAPID ALKALINIZATION FACTOR (RALFs) are cysteine-rich peptides that regulate multiple physiological processes in plants. This peptide family has considerably expanded during land plant evolution, but the role of ancient RALFs in modulating stress responses is unknown.Results: Here, we used the moss Physcomitrium patens as a model to gain insight into the role of RALF peptides in the coordination of plant growth and stress response in non-vascular plants. The quantitative proteomic analysis revealed concerted downregulation of M6 metalloprotease and some membrane proteins, including those involved in stress response, in PpRALF1, 2 and 3 knockout (KO) lines. The subsequent analysis revealed the role of PpRALF3 in growth regulation under abiotic and biotic stress conditions, implying the importance of RALFs in responding to various adverse conditions in bryophytes. We found that knockout of the PpRALF2 and PpRALF3 genes resulted in increased resistance to bacterial and fungal phytopathogens, Pectobacterium carotovorum and Fusarium solani, suggesting the role of these peptides in negative regulation of the immune response in P. patens. Comparing the transcriptomes of PpRALF3 KO and wild-type plants infected by F. solani showed that the regulation of genes in the phenylpropanoid pathway and those involved in cell wall modification and biogenesis was different in these two genotypes. Conclusion: Thus, our study sheds light on the function of the previously uncharacterized PpRALF3 peptide and gives a clue to the ancestral functions of RALF peptides in plant stress response.

2.
New Phytol ; 227(5): 1326-1334, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32320487

RESUMO

In addition to photosynthesis, chloroplasts perform a variety of important cellular functions in the plant cell, which can, for example, regulate plant responses to abiotic and biotic stress conditions. Under stress, intensive chloroplast protein remodeling and degradation can occur, releasing large numbers of endogenous peptides. These protein-derived peptides can be found intracellularly, but also in the plant secretome. Although the pathways of chloroplast protein degradation and the types of chloroplast proteases implicated in this process have received much attention, the role of the resulting peptides is less well understood. In this review we summarize the data on peptide generation processes during the remodeling of the chloroplast proteome under stress conditions and discuss the mechanisms leading to these changes. We also review the experimental evidence which supports the concept that peptides derived from chloroplast proteins can function as regulators of plant responses to (a)biotic stresses.


Assuntos
Cloroplastos , Proteínas de Plantas , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...