Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 6211, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670177

RESUMO

13C magnetic resonance spectroscopy is a viable, non-invasive method to study cell metabolism in skeletal muscles. However, MR sensitivity of 13C is inherently low, which can be overcome by applying a higher static magnetic field strength together with radiofrequency coil arrays instead of single loop coils or large volume coils, and 1H decoupling, which leads to a simplified spectral pattern. 1H-decoupled 13C-MRS requires RF coils which support both, 1H and 13C, Larmor frequencies with sufficient electromagnetic isolation between the pathways of the two frequencies. We present the development, evaluation, and first in vivo measurement with a 7 T 3-channel 13C and 4-channel 1H transceiver array optimized for 1H-decoupled 13C-MRS in the posterior human calf muscles. To ensure minimal cross-coupling between 13C and 1H arrays, several strategies were combined: mutual magnetic flux was minimized by coil geometry, two LCC traps were inserted into each 13C element, and band-pass and low-pass filters were integrated along the signal pathways. The developed coil array was successfully tested in phantom and in vivo MR experiments, showing a simplified spectral pattern and increase in signal-to-noise ratio of approximately a factor 2 between non-decoupled and 1H-decoupled spectra in a glucose phantom and the human calf muscle.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Músculo Esquelético/química , Espectroscopia de Prótons por Ressonância Magnética , Ondas de Rádio , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Campos Eletromagnéticos , Fenômenos Eletromagnéticos , Glicogênio/análise , Glicogênio/química , Humanos , Imagens de Fantasmas , Espectroscopia de Prótons por Ressonância Magnética/métodos
2.
Magn Reson Med ; 79(1): 588-592, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28295563

RESUMO

PURPOSE: To demonstrate a dedicated setup for ultrahigh resolution MR imaging of the human finger in vivo. METHODS: A radiofrequency coil was designed for optimized signal homogeneity and sensitivity in the finger at ultrahigh magnetic field strength (7 T), providing high measurement sensitivity. Imaging sequences (2D turbo-spin echo (TSE) and 3D magnetization-prepared rapid acquisition gradient echo (MPRAGE)) were adapted for high spatial resolution and good contrast of different tissues in the finger, while keeping acquisition time below 10 minutes. Data was postprocessed to display finger structures in three dimensions. RESULTS: 3D MPRAGE data with isotropic resolution of 200 µm, along with 2D TSE images with in-plane resolutions of 58 × 78 µm2 and 100 × 97 µm2 , allowed clear identification of various anatomical features such as bone and bone marrow, tendons and annular ligaments, cartilage, arteries and veins, nerves, and Pacinian corpuscles. CONCLUSION: Using this dedicated finger coil at 7 T, together with adapted acquisition sequences, it is possible to depict the internal structures of the human finger in vivo within patient-compatible measurement time. It may serve as a tool for diagnosis and treatment monitoring in pathologies ranging from inflammatory or erosive joint diseases to injuries of tendons and ligaments to nervous or vascular disorders in the finger. Magn Reson Med 79:588-592, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Dedos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Simulação por Computador , Humanos , Imageamento Tridimensional , Espectroscopia de Ressonância Magnética , Modelos Anatômicos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
3.
Front Neurosci ; 11: 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184184

RESUMO

The transmit-receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil.

4.
Magn Reson Med ; 77(3): 921-927, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26914656

RESUMO

PURPOSE: Separate measurements are required when investigating multiple exercising muscles with singlevoxel-localized dynamic 31 P-MRS. With multivoxel spectroscopy, 31 P-MRS time-series spectra are acquired from multiple independent regions during one exercise-recovery experiment with the same time resolution as for singlevoxel measurements. METHODS: Multiple independently selected volumes were localized using temporally interleaved semi-LASER excitations at 7T. Signal loss caused by mutual saturation from shared excitation or refocusing slices was quantified at partial and full overlap, and potential contamination was investigated in phantom measurements. During an exercise-recovery experiment both gastrocnemius medialis and soleus of two healthy volunteers were measured using multivoxel acquisitions with a total TR of 6 s, while avoiding overlap of excitation slices. RESULTS: Signal reduction by shared adiabatic refocusing slices selected 1 s after the preceding voxel was between 10% (full overlap) and 20% (half overlap), in a phantom measurement. In vivo data were acquired from both muscles within the same exercise experiment, with 13-18% signal reduction. Spectra show phosphocreatine, inorganic phosphate, adenosine-triposphate, phosphomonoesters, and phosphodiesters. CONCLUSION: Signal decrease was relatively low compared to the 2-fold increase in information. The approach could help to improve the understanding in metabolic research and is applicable to other organs and nuclei. Magn Reson Med 77:921-927, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Algoritmos , Exercício Físico/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/fisiologia , Compostos de Fósforo/metabolismo , Isótopos de Fósforo/farmacocinética , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Imagem Molecular/métodos , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Magn Reson Med ; 77(1): 318-327, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26712454

RESUMO

PURPOSE: To develop a simple method for combining phase images from multichannel coils that does not require a reference coil and does not entail phase unwrapping, fitting or iterative procedures. THEORY AND METHODS: At very short echo time, the phase measured with each coil of an array approximates to the phase offset to which the image from that coil is subject. Subtracting this information from the phase of the scan of interest matches the phases from the coils, allowing them to be combined. The effectiveness of this approach is quantified in the brain, calf and breast with coils of diverse designs. RESULTS: The quality of phase matching between coil elements was close to 100% with all coils assessed even in regions of low signal. This method of phase combination was similar in effectiveness to the Roemer method (which needs a reference coil) and was superior to the rival reference-coil-free approaches tested. CONCLUSION: The proposed approach-COMbining Phase data using a Short Echo-time Reference scan (COMPOSER)-is a simple and effective approach to reconstructing phase images from multichannel coils. It requires little additional scan time, is compatible with parallel imaging and is applicable to all coils, independent of configuration. Magn Reson Med 77:318-327, 2017. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Mama/diagnóstico por imagem , Feminino , Humanos , Perna (Membro)/diagnóstico por imagem , Masculino , Razão Sinal-Ruído
6.
Sci Rep ; 6: 32037, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27562396

RESUMO

(31)P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H(+)) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60-75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism.


Assuntos
Trifosfato de Adenosina/metabolismo , Exercício Físico/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/metabolismo , Prótons , Feminino , Humanos , Masculino
7.
Magn Reson Med ; 75(6): 2324-31, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26115021

RESUMO

PURPOSE: Simultaneous acquisition of spatially resolved (31) P-MRI data for evaluation of muscle specific energy metabolism, i.e., PCr and pH kinetics. METHODS: A three-dimensional (3D) gradient-echo sequence for multiple frequency-selective excitations of the PCr and Pi signals in an interleaved sampling scheme was developed and tested at 7 Tesla (T). The pH values were derived from the chemical shift-induced phase difference between the resonances. The achieved spatial resolution was ∼2 mL with image acquisition time below 6 s. Ten healthy volunteers were studied performing plantar flexions during the delay between (31) P-MRI acquisitions, yielding a temporal resolution of 9-10 s. RESULTS: Signal from anatomically matched regions of interest had sufficient signal-to-noise ratio to allow single-acquisition PCr and pH quantification. The Pi signal was clearly detected in voxels of actively exercising muscles. The PCr depletions were in gastrocnemius 42 ± 14% (medialis), 48 ± 17% (lateralis) and in soleus 20 ± 11%. The end exercise pH values were 6.74 ± 0.18 and 6.65 ± 0.27 for gastrocnemius medialis and lateralis, respectively, and 6.96 ± 0.12 for soleus muscle. CONCLUSION: Simultaneous acquisition of PCr and Pi images with high temporal resolution, suitable for measuring PCr and pH kinetics in exercise-recovery experiments, was demonstrated at 7T. This study presents a fast alternative to MRS for quantifying energy metabolism of posterior muscle groups of the lower leg. Magn Reson Med 75:2324-2331, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Exercício Físico/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Fosfocreatina/metabolismo , Adulto , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fosfocreatina/análise , Isótopos de Fósforo/metabolismo , Razão Sinal-Ruído , Adulto Jovem
8.
MAGMA ; 28(5): 493-501, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25894813

RESUMO

OBJECTIVES: This study demonstrates the applicability of semi-LASER localized dynamic (31)P MRS to deeper lying areas of the exercising human soleus muscle (SOL). The effect of accurate localization and high temporal resolution on data specificity is investigated. MATERIALS AND METHODS: To achieve high signal-to-noise ratio (SNR) at a temporal resolution of 6 s, a custom-built human calf coil array was used at 7T. The kinetics of phosphocreatine (PCr) and intracellular pH were quantified separately in SOL and gastrocnemius medialis (GM) muscle of nine volunteers, during rest, plantar flexion exercise, and recovery. RESULTS: The average SNR of PCr at rest was [Formula: see text] in SOL ([Formula: see text] in GM). End exercise PCr depletion in SOL ([Formula: see text] %) was far lower than in GM ([Formula: see text] %). The pH in SOL increased rapidly and, in contrast to GM, remained elevated until the end of exercise. CONCLUSION: (31)P MRS in single-shots every 6 s localized in the deeper-lying SOL enabled quantification of PCr recovery times at low depletions and of fast pH changes, like the initial rise. Both high temporal resolution and accurate spatial localization improve specificity of Pi and, thus, pH quantification by avoiding multiple, and potentially indistinguishable sources for changing the Pi peak shape.


Assuntos
Exercício Físico/fisiologia , Lasers , Espectroscopia de Ressonância Magnética/instrumentação , Músculo Esquelético/fisiologia , Fosfocreatina/metabolismo , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Isótopos de Fósforo/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
9.
Magn Reson Med ; 74(4): 1165-76, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25324179

RESUMO

PURPOSE: To establish a framework for transmit array power balance calculations based on power correlation matrices to accurately quantify the loss contributions from different mechanisms such as coupling, lumped components, and radiation. THEORY AND METHODS: Starting from Poynting's theorem, power correlation matrices are derived for all terms in the power balance, which is formulated as a matrix equation. Finite-difference time-domain simulations of two 7 T eight-channel head array coils at 297.2 MHz are used to verify the theoretical considerations and demonstrate their application. Care is taken to accurately incorporate all loss mechanisms. The power balance for static B1 phase shims as well as two-dimensional spatially selective transmit SENSE pulses is shown. RESULTS: The simulated power balance shows an excellent agreement with theory, with a maximum power imbalance of less than 0.11%. Power loss contributions from the different loss mechanisms vary significantly between the investigated setups, and depending on the excitation mode imposed on the coil. CONCLUSION: The presented approach enables a straightforward loss evaluation for an arbitrary excitation of transmit coil arrays. Worst-case power imbalance and losses are calculated in a straightforward manner. This allows for deeper insight into transmit array loss mechanisms, incorporation of radiated power components in specific absorption rate calculations and verification of electromagnetic simulations.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Campos Eletromagnéticos , Humanos , Modelos Biológicos , Modelos Teóricos , Imagens de Fantasmas
10.
Magn Reson Med ; 73(3): 1190-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24752959

RESUMO

PURPOSE: The aim of this study was to develop a measurement protocol for noninvasive simultaneous perfusion quantification and T2 *-weighted MRI acquisition in the exercising calf muscle at 7 Tesla. METHODS: Using a nonmagnetic ergometer and a dedicated in-house built calf coil array, dynamic pulsed arterial spin labeling (PASL) measurements with a temporal resolution of 12 s were performed before, during, and after plantar flexion exercise in 16 healthy volunteers. RESULTS: Postexercise peak perfusion in gastrocnemius muscle (GAS) was 27 ± 16 ml/100g/min, whereas in soleus (SOL) and tibialis anterior (TA) muscles it remained at baseline levels. T2 *-weighted and ASL time courses in GAS showed comparable times to peak of 161 ± 72 s and 167 ± 115 s, respectively. The T2 *-weighted signal in the GAS showed a minimum during exercise (88 ± 6 % of the baseline signal) and a peak during the recovery (122 ± 9%), whereas in all other muscles only a signal decrease was observed (minimum 91 ± 6% in SOL; 87 ± 8% in TA). CONCLUSION: We demonstrate the feasibility of dynamic perfusion quantification in skeletal muscle at 7 Tesla using PASL. This may help to better investigate the physiological processes in the skeletal muscle and also in diseases such as diabetes mellitus and peripheral arterial disease.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Exercício Físico/fisiologia , Angiografia por Ressonância Magnética/métodos , Músculo Esquelético/fisiologia , Esforço Físico/fisiologia , Adulto , Estudos de Viabilidade , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Perna (Membro) , Masculino , Músculo Esquelético/irrigação sanguínea , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Magn Reson Med ; 73(4): 1669-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24753115

RESUMO

PURPOSE: This article presents a novel inductive decoupling technique for form-fitting coil arrays of monolithic transmission line resonators, which target biomedical applications requiring high signal-to-noise ratio over a large field of view to image anatomical structures varying in size and shape from patient to patient. METHODS: Individual transmission line resonator elements are mutually decoupled using magnetic flux sharing by overlapping annexes. This decoupling technique was evaluated by electromagnetic simulations and bench measurements for two- and four-element arrays, comparing single- and double-gap transmission line resonator designs, combined either with a basic capacitive matching scheme or inductive pickup loop matching. The best performing array was used in 7T MRI experiments demonstrating its form-fitting ability and parallel imaging potential. RESULTS: The inductively matched double-gap transmission line resonator array provided the best decoupling efficiency in simulations and bench measurements (<-15 dB). The decoupling and parallel imaging performance proved robust against mechanical deformation of the array. CONCLUSION: The presented decoupling technique combines the robustness of conventional overlap decoupling regarding coil loading and operating frequency with the extended field of view of nonoverlapped coils. While demonstrated on four-element arrays, it can be easily expanded to fabricate readily decoupled form-fitting 2D arrays with an arbitrary number of elements in a single etching process.


Assuntos
Eletrônica Médica/instrumentação , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Magn Reson Med ; 73(6): 2376-89, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25046817

RESUMO

PURPOSE: To enhance sensitivity and coverage for calf muscle studies, a novel, form-fitted, three-channel phosphorus-31 ((31) P), two-channel proton ((1) H) transceiver coil array for 7 T MR imaging and spectroscopy is presented. METHODS: Electromagnetic simulations employing individually generated voxel models were performed to design a coil array for studying nonpathological muscle metabolism. Static phase combinations of the coil elements' transmit fields were optimized based on homogeneity and efficiency for several voxel models. The best-performing design was built and tested both on phantoms and in vivo. RESULTS: Simulations revealed that a shared conductor array for (31) P provides more robust interelement decoupling and better homogeneity than an overlap array in this configuration. A static B1 (+) shim setting that suited various calf anatomies was identified and implemented. Simulations showed that the (31) P array provides signal-to-noise ratio (SNR) benefits over a single loop and a birdcage coil of equal radius by factors of 3.2 and 2.6 in the gastrocnemius and by 2.5 and 2.0 in the soleus muscle. CONCLUSION: The performance of the coil in terms of B1 (+) and achievable SNR allows for spatially localized dynamic (31) P spectroscopy studies in the human calf. The associated higher specificity with respect to nonlocalized measurements permits distinguishing the functional responses of different muscles.


Assuntos
Aumento da Imagem/instrumentação , Perna (Membro) , Imageamento por Ressonância Magnética/instrumentação , Músculo Esquelético/anatomia & histologia , Adulto , Simulação por Computador , Desenho de Equipamento , Feminino , Voluntários Saudáveis , Humanos , Masculino , Imagens de Fantasmas , Isótopos de Fósforo
13.
NMR Biomed ; 27(5): 553-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610788

RESUMO

Skeletal muscle metabolism is impaired in disorders like diabetes mellitus or peripheral vascular disease. The skeletal muscle echo planar imaging (EPI) signal (S(EPI) ) and its relation to energy metabolism are still debated. Localised ³¹P MRS and S(EPI) data from gastrocnemius medialis of 19 healthy subjects were combined in one scanning session to study direct relationships between phosphocreatine (PCr), pH kinetics and parameters of T2∗ time courses. Dynamic spectroscopy (semi-LASER) and EPI were performed immediately before, during and after 5 min of plantar flexions. Data were acquired in a 7 T MR scanner equipped with a custom-built ergometer and a dedicated ³¹P/¹H radio frequency (RF) coil array. Using a form-fitted multi-channel ³¹P/¹H coil array resulted in high signal-to-noise ratio (SNR). PCr and pH in the gastrocnemius medialis muscle were quantified from each ³¹P spectrum, acquired every 6 s. During exercise, SEPI (t) was found to be a linear function of tissue pH(t) (cross-correlation r = -0.85 ± 0.07). Strong Pearson's correlations were observed between post exercise time-to-peak (TTP) of SEPI and (a) the time constant of PCr recovery τPCr recovery (r = 0.89, p < 10⁻6), (b) maximum oxidative phosphorylation using the linear model, Q(max, lin) (r = 0.65, p = 0.002), the adenosine-diphosphate-driven model, Q(max,ADP) (r = 0.73, p = 0.0002) and (c) end exercise pH (r = 0.60, p = 0.005). Based on combined accurately localised ³¹P MRS and T2∗ weighted MRI, both with high temporal resolution, strong correlations of the skeletal muscle SEPI during exercise and tissue pH time courses and of post exercise SEPI and parameters of energy metabolism were observed. In conclusion, a tight coupling between skeletal muscle metabolic activity and tissue T2∗ signal weighting, probably induced by osmotically driven water shift, exists and can be measured non-invasively, using NMR at 7 T.


Assuntos
Exercício Físico/fisiologia , Perna (Membro)/fisiologia , Imageamento por Ressonância Magnética , Músculo Esquelético/fisiologia , Fosforilação Oxidativa , Fosfocreatina/metabolismo , Adulto , Demografia , Imagem Ecoplanar , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Fosfocreatina/análogos & derivados , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...