Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 260(1): 13, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809276

RESUMO

MAIN CONCLUSION: PM3 and PM8 alleles carried by two CIMMYT wheat lines confer powdery mildew resistance in seedlings and/or adult plants. A stage-specific epistatic interaction was observed between PM3 and PM8. Powdery mildew is an important foliar disease of wheat. Major genes for resistance, which have been widely used in wheat breeding programs, are typically effective against only limited numbers of virulence genes of the pathogen. The main aim of this study was to map resistance loci in wheat lines 7HRWSN58 and ZWW09-149 from the International Maize and Wheat Improvement Center (CIMMYT). Doubled haploid populations (Magenta/7HRWSN58 and Emu Rock/ZWW09-149) were developed and grown in controlled environment experiments and inoculated with a composite of Blumeria graminis f.sp. tritici isolates that had been collected at various locations in Western Australia. Plants were assessed for powdery mildew symptoms (percentage leaf area diseased) on seedlings and adult plants. Populations were subjected to genotyping-by-sequencing and assayed for known SNPs in the resistance gene PM3. Linkage maps were constructed, and markers were anchored to the wheat reference genome sequence. In both populations, there were asymptomatic lines that exhibited no symptoms. Among symptomatic lines, disease severity varied widely. In the Magenta/7HRWSN58 population, most of the observed variation was attributed to the PM3 region of chromosome 1A, with the allele from 7HRWSN58 conferring resistance in seedlings and adult plants. In the Emu Rock/ZWW09-149 population, two interacting quantitative trait loci were mapped: one at PM3 and the other on chromosome 1B. The Emu Rock/ZWW09-149 population was confirmed to segregate for a 1BL·1RS translocation that carries the PM8 powdery mildew resistance gene from rye. Consistent with previous reports that PM8-derived resistance can be suppressed by PM3 alleles, the observed interaction between the quantitative trait loci on chromosomes 1A and 1B indicated that the PM3 allele carried by ZWW09-149 suppresses PM8-derived resistance from ZWW09-149, but only at the seedling stage. In adult plants, the PM8 region conferred resistance regardless of the PM3 genotype. The resistance sources and molecular markers that were investigated here could be useful in wheat breeding.


Assuntos
Ascomicetos , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Plântula , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Plântula/genética , Plântula/microbiologia , Resistência à Doença/genética , Alelos , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética , Ligação Genética , Genes de Plantas , Melhoramento Vegetal , Genótipo
2.
Nat Commun ; 14(1): 6108, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777525

RESUMO

Stimuli-responsive hydrogels have garnered significant attention as a versatile class of soft actuators. Introducing anisotropic properties, and shape-change programmability to responsive hydrogels promises a host of opportunities in the development of soft robots. Herein we report the synthesis of pH-responsive hydrogel nanocomposites with predetermined microstructural anisotropy, shape-transformation, and self-healing. Our hydrogel nanocomposites are largely composed of zwitterionic monomers and asymmetric cellulose nanocrystals. While the zwitterionic nature of the network imparts both self-healing and cytocompatibility to our hydrogel nanocomposites, the shear-induced alignment of cellulose nanocrystals renders their anisotropic swelling and mechanical properties. Thanks to the self-healing properties, we utilized a cut-and-paste approach to program reversible, and complex deformation into our hydrogels. As a proof-of-concept, we demonstrated the transport of light cargo using tethered and untethered soft robots made from our hydrogels. We believe the proposed material system introduce a powerful toolbox for the development of future generations of biomedical soft robots.

3.
ACS Biomater Sci Eng ; 8(2): 777-785, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35045252

RESUMO

Despite the rapid progress in applying three-dimensional (3D) printing in the field of tissue engineering, fabrication of heterogeneous and complex 3D tumor models remains a challenge. In this study, we report a hybrid nanoink (AGC) composed of alginate, gelatin methacryloyl (GelMA), and cellulose nanocrystal (CNC), designed for multinozzle microextrusion 3D printing of tumor models. Our results show that the ink consisting of 2 wt % alginate, 4 wt % GelMA, and 6 wt % cellulose nanocrystals (AGC246) possesses a superior shear-thinning property and little hysteresis in viscosity recovery. The fabrication of a colorectal cancer (CRC) model is demonstrated by printing a 3D topological substrate with AGC246 and then seeding/printing endothelial (EA-hy 926) and colorectal carcinoma (HCT 116) cells on top. Direct seeding of cells by dropping a cell suspension onto the 3D substrate with distinctive topological features (villi and trenches) deemed inadequate in either creating a monolayer of endothelial cells or precise positioning of cancer cell clusters, even with surface treatment to promote cell adhesion. In contrast, 3D biopinting of a CRC model using cell-laden AGC153, coupled with dual ultraviolet (UV) and ionic cross-linking, is shown to be successful. Hence, this study brings advancements in 3D bioprinting technology through innovative material and methodology designs, which could enable the fabrication of complex in vitro models for both fundamental studies of disease processes and applications in drug screening.


Assuntos
Bioimpressão , Neoplasias , Bioimpressão/métodos , Células Endoteliais , Gelatina/química , Metacrilatos , Alicerces Teciduais/química
4.
Sci Rep ; 10(1): 20648, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244046

RESUMO

3D bioprinting of living cellular constructs with heterogeneity in cell types and extra cellular matrices (ECMs) matching those of biological tissues remains challenging. Here, we demonstrate that, through bioink material design, microextrusion-based (ME) bioprinting techniques have the potential to address this challenge. A new bioink employing alginate (1%), cellulose nanocrystal (CNC) (3%), and gelatin methacryloyl (GelMA) (5%) (namely 135ACG hybrid ink) was formulated for the direct printing of cell-laden and acellular architectures. The 135ACG ink displayed excellent shear-thinning behavior and solid-like properties, leading to high printability without cell damage. After crosslinking, the ACG gel can also provide a stiff ECM ideal for stromal cell growth. By controlling the degree of substitution and polymer concentration, a GelMA (4%) bioink was designed to encapsulate hepatoma cells (hepG2), as GelMA gel possesses the desired low mechanical stiffness matching that of human liver tissue. Four different versions of to-scale liver lobule-mimetic constructs were fabricated via ME bioprinting, with precise positioning of two different cell types (NIH/3T3 and hepG2) embedded in matching ECMs (135ACG and GelMA, respectively). The four versions allowed us to exam effects of mechanical cues and intercellular interactions on cell behaviors. Fibroblasts thrived in stiff 135ACG matrix and aligned at the 135ACG/GelMA boundary due to durotaxis, while hepG2 formed spheroids exclusively in the soft GelMA matrix. Elevated albumin production was observed in the bicellular 3D co-culture of hepG2 and NIH/3T3, both with and without direct intercellular contact, indicating that improved hepatic cell function can be attributed to soluble chemical factors. Overall, our results showed that complex constructs with multiple cell types and varying ECMs can be bioprinted and potentially useful for both fundamental biomedical research and translational tissue engineering.


Assuntos
Celulose/química , Fígado/citologia , Nanopartículas/química , Alginatos/química , Animais , Biomimética/métodos , Bioimpressão/métodos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Matriz Extracelular/fisiologia , Fibroblastos/citologia , Gelatina/química , Células Hep G2 , Hepatócitos/citologia , Humanos , Tinta , Camundongos , Células NIH 3T3 , Impressão Tridimensional , Células Estromais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Curr Pharm Des ; 26(17): 2057-2071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32250211

RESUMO

The innate abilities of cancer stem cells (CSCs), such as multi-drug resistance, drug efflux, quiescence and ionizing radiation tolerance, protect them from most traditional chemotherapeutics. As a result, this small subpopulation of persistent cells leads to more aggressive and chemoresistant cancers, causing tumour relapse and metastasis. This subpopulation is differentiated from the bulk tumour population through a wide variety of surface markers expressed on the cell surface. Recent developments in nanomedicine and targeting delivery methods have given rise to new possibilities for specifically targeting these markers and preferentially eliminating CSCs. Herein, we first summarize the range of surface markers identifying CSC populations in a variety of cancers; then, we discuss recent attempts to actively target CSCs and their niches using liposomal, nanoparticle, carbon nanotube and viral formulations.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/patologia
6.
Mater Sci Eng C Mater Biol Appl ; 100: 564-575, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948093

RESUMO

Recent exciting findings of the particular properties of Carbon dot (CDs) have shed light on potential biomedical applications of CDs-containing composites. While CDs so far have been widely used as biosensors and bioimaging agents, in the present study for the first time, we evaluate the osteoconductivity of CDs in poly (ε-caprolactone) (PCL)/polyvinyl alcohol (PVA) [PCL/PVA] nanofibrous scaffolds. Moreover, further studies were performed to evaluate egg shell-derived calcium phosphate (TCP3) and its cellular responses, biocompatibility and in vitro osteogenesis. Scaffolds were fabricated by simultaneous electrospinning of PCL with three different types of calcium phosphate, PVA and CDs. Fabricated scaffolds were characterized by Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), contact angle measurement and degradation assessment. SEM, the methyl thiazolyl tetrazolium (MTT) assay, and alkaline phosphatase (ALP) activity test were performed to evaluate cell morphology, proliferation and osteogenic differentiation, respectively. The results demonstrated that while the addition of just 1 wt% CDs and TCP3 individually into PCL/PVA nanocomposite enhanced ALP activity and cell proliferation rate (p < 0.05), the synergetic effect of CDs/TCP3 led to highest osteogenic differentiation and proliferation rate compared to other scaffolds (p < 0.05). Hence, CDs and PCL/PVA-TCP3 could serve as a potential candidate for bone tissue regeneration.


Assuntos
Osso e Ossos/fisiologia , Fosfatos de Cálcio/química , Carbono/química , Casca de Ovo/química , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Animais , Adesão Celular , Proliferação de Células , Forma Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Nanofibras/ultraestrutura , Osteogênese , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/citologia , Molhabilidade
7.
Nanotechnology ; 29(47): 475101, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30179859

RESUMO

In this study, we introduce a novel graphene oxide/silver/arginine (GO/Ag/Arg) nanohybrid structure, which can act as an angiogenesis promoter and provide antibacterial nanostructure for improving the wound healing process. GO/Ag nanostructure has been optimized in terms of the GO/Ag mass ratio and pH values using central composite design and the response surface method to increase the Ag loading efficiency. Then, Arg was chemically introduced to the surface of GO/Ag nanostructure. Electrospun polycaprolactone (PCL)-GO/Ag/Arg nanocomposite was successfully fabricated and characterized. The synthesized nanocomposite demonstrated not only a great antibacterial effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial species, but appropriate biocompatibility against L929 fibroblastic cell lines. The results demonstrated that the preparation of the PCL-GO/Ag/Arg nanocomposite at a concentration of 1.0 wt% GO/Ag/Arg possessed the best biological and mechanical features. In vivo experiments also revealed that the use of optimized PCL-GO/Ag/Arg nanocomposite, after 12 d of treatment, led to significant increase in the healing process and also regeneration of the wound via reconstruction of a thickened epidermis layer on the wound surface, which was confirmed by histological analysis. In conclusion, the proposed approach can introduce a novel notion for preparing antibacterial material that significantly promotes angiogenesis.


Assuntos
Antibacterianos/uso terapêutico , Arginina/uso terapêutico , Grafite/uso terapêutico , Nanocompostos/uso terapêutico , Prata/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Arginina/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Grafite/química , Teste de Materiais , Camundongos , Nanocompostos/química , Óxidos/química , Óxidos/farmacologia , Prata/química , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/prevenção & controle
8.
J Biomed Mater Res A ; 106(8): 2284-2343, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29611900

RESUMO

Graphene and its derivatives have been well-known as influential factors in differentiating stem/progenitor cells toward the osteoblastic lineage. However, there have been many controversies in the literature regarding the parameters effect on bone regeneration, including graphene concentration, size, type, dimension, hydrophilicity, functionalization, and composition. This study attempts to produce a comprehensive review regarding the given parameters and their effects on stimulating cell behaviors such as proliferation, viability, attachment and osteogenic differentiation. In this study, a systematic search of MEDLINE database was conducted for in vitro studies on the use of graphene and its derivatives for bone tissue engineering from January 2000 to February 2018, organized according to the PRISMA statement. According to reviewed articles, different graphene derivative, including graphene, graphene oxide (GO) and reduced graphene oxide (RGO) with mass ratio ≤1.5 wt % for all and concentration up to 50 µg/mL for graphene and GO, and 60 µg/mL for RGO, are considered to be safe for most cell types. However, these concentrations highly depend on the types of cells. It was discovered that graphene with lateral size less than 5 µm, along with GO and RGO with lateral dimension less than 1 µm decrease cell viability. In addition, the three-dimensional structure of graphene can promote cell-cell interaction, migration and proliferation. When graphene and its derivatives are incorporated with metals, polymers, and minerals, they frequently show promoted mechanical properties and bioactivity. Last, graphene and its derivatives have been found to increase the surface roughness and porosity, which can highly enhance cell adhesion and differentiation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2284-2343, 2018.


Assuntos
Osso e Ossos/fisiologia , Grafite/química , Osteogênese , Engenharia Tecidual/métodos , Animais , Humanos
9.
Theor Appl Genet ; 130(12): 2637-2654, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28913578

RESUMO

KEY MESSAGE: QTL for tan spot resistance were mapped on wheat chromosomes 1A and 2A. Lines were developed with resistance alleles at these loci and at the tsn1 locus on chromosome 5B. These lines expressed significantly higher resistance than the parent with tsn1 only. Tan spot (syn. yellow spot and yellow leaf spot) caused by Pyrenophora tritici-repentis is an important foliar disease of wheat in Australia. Few resistance genes have been mapped in Australian germplasm and only one, known as tsn1 located on chromosome 5B, is known in Australian breeding programs. This gene confers insensitivity to the fungal effector ToxA. The main aim of this study was to map novel resistance loci in two populations: Calingiri/Wyalkatchem, which is fixed for the ToxA-insensitivity allele tsn1, and IGW2574/Annuello, which is fixed for the ToxA-sensitivity allele Tsn1. A second aim was to combine new loci with tsn1 to develop lines with improved resistance. Tan spot severity was evaluated at various growth stages and in multiple environments. Symptom severity traits exhibited quantitative variation. The most significant quantitative trait loci (QTL) were detected on chromosomes 2A and 1A. The QTL on 2A explained up to 29.2% of the genotypic variation in the Calingiri/Wyalkatchem population with the resistance allele contributed by Wyalkatchem. The QTL on 1A explained up to 28.1% of the genotypic variation in the IGW2574/Annuello population with the resistance allele contributed by Annuello. The resistance alleles at both QTL were successfully combined with tsn1 to develop lines that express significantly better resistance at both seedling and adult plant stages than Calingiri which has tsn1 only.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Ascomicetos , Austrália , Mapeamento Cromossômico , Cromossomos de Plantas , Modelos Lineares , Modelos Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...