Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050006

RESUMO

In the present study, an attempt was made to investigate the in vitro antioxidant, anticancer, and antibacterial activities of Delonix regia, then in vivo evaluate its safety as a natural colorant and sweetener in beverages compared to synthetic colorant and sweetener in rats, then serve the beverages for sensory evaluation. Delonix regia flowers had high protein, polysaccharide, Ca, Na, Mg, K, and Fe contents. The Delonix regia pigment extract (DRPE) polysaccharides were separated and purified by gel permeation chromatography on Sephacryl S-200, characterized by rich polysaccharides (13.6 g/L). The HPLC sugar profile detected the monosaccharides in the extracted polysaccharides, composed of mannose, galactose, glucose, arabinose, and gluconic acid, and the structure of saccharides was confirmed by FTIR, which showed three active groups: carbonyl, hydrocarbon, and hydroxyl. On the other hand, the red pigment constituents of DRPE were detected by HPLC; the main compounds were delphinidin and cyanidin at 15 µg/mL. The DRPE contained a considerable amount (26.33 mg/g) of anthocyanins, phenolic compounds (64.7 mg/g), and flavonoids (10.30 mg/g), thus influencing the antioxidant activity of the DRPE, which scavenged 92% of DPPH free radicals. Additionally, it inhibited the population of pathogenic bacteria, including Staphylococcus aureus, Listeria monocyogenes, Salmonella typhimurum, and Pseudomonas aeruginosa, in the range of 30-90 µg/mL, in addition to inhibiting 85% of pancreatic cancer cell lines. On the in vivo level, the rats that were delivered a diet containing DRPE showed regular liver markers (AST, ALP, and ALT); kidney markers (urea and creatinine); high TP, TA, and GSH; and low MDA, while rats treated with synthetic dye and aspartame showed higher liver and kidney markers; lowered TP, TA, and GSH; and high MDA. After proving the safety of DRPE, it can be safely added to strawberry beverages. Significant sensorial traits, enhanced red color, and taste characterize the strawberry beverages supplemented with DRPE. The lightness and redness of strawberries were enhanced, and the color change ΔE values in DRPE-supplemented beverages ranged from 1.1 to 1.35 compared to 1.69 in controls, indicating the preservative role of DRPE on color. So, including DRPE in food formulation as a natural colorant and sweetener is recommended for preserving health and the environment.


Assuntos
Antioxidantes , Fabaceae , Ratos , Animais , Antioxidantes/química , Antocianinas/farmacologia , Antocianinas/análise , Edulcorantes , Extratos Vegetais/química , Polissacarídeos/química , Carboidratos/análise , Flores/química , Antibacterianos/farmacologia , Antibacterianos/análise , Fabaceae/química , Bebidas/análise
2.
Physiol Plant ; 173(4): 1369-1381, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33619766

RESUMO

Melatonin (MT) has been reported to regulate certain plant physiological processes and promote tolerance to different environmental stresses such as salinity. Green bean (Phaseolus vulgaris L. cv. Royal Nel) seedlings were exposed to 200 mM NaCl with or without pre-treatment with 150 µM MT. Salt stress led to a lower chlorophyll content, a reduced photosynthetic activity, increased reactive oxygen species (ROS) contents, and decreased photosystem II (PSII) activity. The application of exogenous MT to green bean seedlings under salt stress improved photosynthetic activity and alleviated the oxidative damages by enhancing the activity of antioxidant enzymes. The expression of catalase (CAT1), glutathione reductase (GR), superoxide dismutase (CuZnSOD1), ascorbate peroxidase (APX), Peroxiredoxin Q (PrxQ), and 2-cysteine peroxiredoxin (2-Cys-Prx) encoding genes was significantly increased under salt stress in green bean seedling compared with the untreated control. However, plants treated with exogenous MT and NaCl had 28.8, 21.1, 26.1, 20, 26.2, and 22.4% higher CuZnSOD, CAT1, APX, GR, PrxQ, and 2-Cys-Prx transcript levels, respectively, compared to NaCl stress alone. Our study revealed the protective mechanisms mediated by exogenous MT application in NaCl stress alleviation and our findings could be used in the management of green bean cultivation in salinity-prone soils.


Assuntos
Melatonina , Phaseolus , Antioxidantes , Ascorbato Peroxidases/metabolismo , Expressão Gênica , Melatonina/farmacologia , Estresse Oxidativo , Phaseolus/genética , Phaseolus/metabolismo , Espécies Reativas de Oxigênio , Estresse Salino , Plântula/genética , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...