Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539926

RESUMO

The MCM8/9 complex is implicated in aiding fork progression and facilitating homologous recombination (HR) in response to several DNA damage agents. MCM9 itself is an outlier within the MCM family containing a long C-terminal extension (CTE) comprising 42% of the total length, but with no known functional components and high predicted disorder. In this report, we identify and characterize two unique motifs within the primarily unstructured CTE that are required for localization of MCM8/9 to sites of mitomycin C (MMC)-induced DNA damage. First, an unconventional "bipartite-like" nuclear localization (NLS) motif consisting of two positively charged amino acid stretches separated by a long intervening sequence is required for the nuclear import of both MCM8 and MCM9. Second, a variant of the BRC motif (BRCv) similar to that found in other HR helicases is necessary for localization to sites of MMC damage. The MCM9-BRCv directly interacts with and recruits RAD51 downstream to MMC-induced damage to aid in DNA repair. Patient lymphocytes devoid of functional MCM9 and discrete MCM9 knockout cells have a significantly impaired ability to form RAD51 foci after MMC treatment. Therefore, the disordered CTE in MCM9 is functionally important in promoting MCM8/9 activity and in recruiting downstream interactors; thus, requiring full-length MCM9 for proper DNA repair.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Proteínas de Manutenção de Minicromossomo/metabolismo , Mitomicina/farmacologia , Rad51 Recombinase/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Proteínas de Manutenção de Minicromossomo/análise , Rad51 Recombinase/análise
2.
J Biol Chem ; 292(46): 19001-19012, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28939774

RESUMO

Replicative hexameric helicases are thought to unwind duplex DNA by steric exclusion (SE) where one DNA strand is encircled by the hexamer and the other is excluded from the central channel. However, interactions with the excluded strand on the exterior surface of hexameric helicases have also been shown to be important for DNA unwinding, giving rise to the steric exclusion and wrapping (SEW) model. For example, the archaeal Sulfolobus solfataricus minichromosome maintenance (SsoMCM) helicase has been shown to unwind DNA via a SEW mode to enhance unwinding efficiency. Using single-molecule FRET, we now show that the analogous Escherichia coli (Ec) DnaB helicase also interacts specifically with the excluded DNA strand during unwinding. Mutation of several conserved and positively charged residues on the exterior surface of EcDnaB resulted in increased interaction dynamics and states compared with wild type. Surprisingly, these mutations also increased the DNA unwinding rate, suggesting that electrostatic contacts with the excluded strand act as a regulator for unwinding activity. In support of this, experiments neutralizing the charge of the excluded strand with a morpholino substrate instead of DNA also dramatically increased the unwinding rate. Of note, although the stability of the excluded strand was nearly identical for EcDnaB and SsoMCM, these enzymes are from different superfamilies and unwind DNA with opposite polarities. These results support the SEW model of unwinding for EcDnaB that expands on the existing SE model of hexameric helicase unwinding to include contributions from the excluded strand to regulate the DNA unwinding rate.


Assuntos
DNA Bacteriano/metabolismo , DnaB Helicases/metabolismo , Escherichia coli/metabolismo , Sequência de Aminoácidos , DNA Bacteriano/química , DnaB Helicases/química , Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Alinhamento de Sequência , Eletricidade Estática
3.
Proc Natl Acad Sci U S A ; 112(14): 4286-91, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831490

RESUMO

RecQ helicases are a widely conserved family of ATP-dependent motors with diverse roles in nearly every aspect of bacterial and eukaryotic genome maintenance. However, the physical mechanisms by which RecQ helicases recognize and process specific DNA replication and repair intermediates are largely unknown. Here, we solved crystal structures of the human RECQ1 helicase in complexes with tailed-duplex DNA and ssDNA. The structures map the interactions of the ssDNA tail and the branch point along the helicase and Zn-binding domains, which, together with reported structures of other helicases, define the catalytic stages of helicase action. We also identify a strand-separating pin, which (uniquely in RECQ1) is buttressed by the protein dimer interface. A duplex DNA-binding surface on the C-terminal domain is shown to play a role in DNA unwinding, strand annealing, and Holliday junction (HJ) branch migration. We have combined EM and analytical ultracentrifugation approaches to show that RECQ1 can form what appears to be a flat, homotetrameric complex and propose that RECQ1 tetramers are involved in HJ recognition. This tetrameric arrangement suggests a platform for coordinated activity at the advancing and receding duplexes of an HJ during branch migration.


Assuntos
DNA Helicases/química , DNA/química , RecQ Helicases/química , Animais , Cromatografia em Gel , Cristalização , Cristalografia por Raios X , DNA Cruciforme/fisiologia , DNA de Cadeia Simples/química , Escherichia coli/metabolismo , Humanos , Insetos , Conformação Molecular , Desnaturação de Ácido Nucleico , Nucleotídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Zinco/química
4.
J Cell Biol ; 208(5): 545-62, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25733713

RESUMO

Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5'-to-3' polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Helicase da Síndrome de Werner
5.
Nat Struct Mol Biol ; 20(3): 347-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396353

RESUMO

Topoisomerase I (TOP1) inhibitors are an important class of anticancer drugs. The cytotoxicity of TOP1 inhibitors can be modulated by replication fork reversal through a process that requires poly(ADP-ribose) polymerase (PARP) activity. Whether regressed forks can efficiently restart and what factors are required to restart fork progression after fork reversal are still unknown. We have combined biochemical and EM approaches with single-molecule DNA fiber analysis to identify a key role for human RECQ1 helicase in replication fork restart after TOP1 inhibition that is not shared by other human RecQ proteins. We show that the poly(ADP-ribosyl)ation activity of PARP1 stabilizes forks in the regressed state by limiting their restart by RECQ1. These studies provide new mechanistic insights into the roles of RECQ1 and PARP in DNA replication and offer molecular perspectives to potentiate chemotherapeutic regimens based on TOP1 inhibition.


Assuntos
Replicação do DNA , RecQ Helicases/metabolismo , Inibidores da Topoisomerase I/farmacologia , Camptotecina/farmacologia , Linhagem Celular , DNA Topoisomerases Tipo I/metabolismo , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RecQ Helicases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...