Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 41(21): 3367-3379, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37100721

RESUMO

Recent work demonstrating that asymptomatic carriers of P. falciparum parasites make up a large part of the infectious reservoir highlights the need for an effective malaria vaccine. Given the historical challenges of vaccine development, multiple parasite stages have been targeted, including the sexual stages required for transmission. Using flow cytometry to efficiently screen for P. falciparum gamete/zygote surface reactivity, we identified 82 antibodies that bound live P. falciparum gametes/zygotes. Ten antibodies had significant transmission-reducing activity (TRA) in a standard membrane feeding assay and were subcloned along with 9 nonTRA antibodies as comparators. After subcloning, only eight of the monoclonals obtained have significant TRA. These eight TRA mAbs do not recognize epitopes present in any of the current recombinant transmission-blocking vaccine candidates, Pfs230D1M, Pfs48/45.6C, Pf47 D2 and rPfs25. One TRA mAb immunoprecipitates two surface antigens, Pfs47 and Pfs230, that are expressed by both gametocytes and gametes/zygotes. These two proteins have not previously been reported to associate and the recognition of both by a single TRA mAb suggests the Pfs47/Pfs230 complex is a new vaccine target. In total, Pfs230 was the dominant target antigen, with five of the eight TRA mAbs and 8 of 11 nonTRA gamete/zygote surface reactive mAbs interacting with Pfs230. Of the three remaining TRA mAbs, two recognized non-reduced, parasite-produced Pfs25 and one bound non-reduced, parasite-produced Pfs48/45. None of the TRA mAbs bound protein on an immunoblot of reduced gamete/zygote extract and two TRA mAbs were immunoblot negative, indicating none of the new TRA epitopes are linear. The identification of eight new TRA mAbs that bind epitopes not included in any of the constructs currently under advancement as transmission-blocking vaccine candidates may provide new targets worthy of further study.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum , Anticorpos Bloqueadores , Epitopos , Anticorpos Antiprotozoários , Anticorpos Monoclonais , Proteínas de Protozoários , Antígenos de Protozoários
2.
ACS Pharmacol Transl Sci ; 3(5): 948-964, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33073193

RESUMO

Drug resistance is a constant threat to malaria control efforts making it important to maintain a good pipeline of new drug candidates. Of particular need are compounds that also block transmission by targeting sexual stage parasites. Mature sexual stages are relatively resistant to all currently used antimalarials except the 8-aminoquinolines that are not commonly used due to potential side effects. Here, we synthesized a new Torin 2 derivative, NCATS-SM3710 with increased aqueous solubility and specificity for Plasmodium and demonstrate potent in vivo activity against all P. berghei life cycle stages. NCATS-SM3710 also has low nanomolar EC50s against in vitro cultured asexual P. falciparum parasites (0.38 ± 0.04 nM) and late stage gametocytes (5.77 ± 1 nM). Two independent NCATS-SM3710/Torin 2 resistant P. falciparum parasite lines produced by growth in sublethal Torin 2 concentrations both had genetic changes in PF3D7_0509800, annotated as a phosphatidylinositol 4 kinase (Pf PI4KIIIß). One line had a point mutation in the putative active site (V1357G), and the other line had a duplication of a locus containing Pf PI4KIIIß. Both lines were also resistant to other Pf PI4K inhibitors. In addition NCATS-SM3710 inhibited purified Pf PI4KIIIß with an IC50 of 2.0 ± 0.30 nM. Together the results demonstrate that Pf PI4KIIIß is the target of Torin 2 and NCATS-SM3710 and provide new options for potent multistage drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...