Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4822, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844769

RESUMO

We introduce Ultra-Flexible Tentacle Electrodes (UFTEs), packing many independent fibers with the smallest possible footprint without limitation in recording depth using a combination of mechanical and chemical tethering for insertion. We demonstrate a scheme to implant UFTEs simultaneously into many brain areas at arbitrary locations without angle-of-insertion limitations, and a 512-channel wireless logger. Immunostaining reveals no detectable chronic tissue damage even after several months. Mean spike signal-to-noise ratios are 1.5-3x compared to the state-of-the-art, while the highest signal-to-noise ratios reach 89, and average cortical unit yields are ~1.75/channel. UFTEs can track the same neurons across sessions for at least 10 months (longest duration tested). We tracked inter- and intra-areal neuronal ensembles (neurons repeatedly co-activated within 25 ms) simultaneously from hippocampus, retrosplenial cortex, and medial prefrontal cortex in freely moving rodents. Average ensemble lifetimes were shorter than the durations over which we can track individual neurons. We identify two distinct classes of ensembles. Those tuned to sharp-wave ripples display the shortest lifetimes, and the ensemble members are mostly hippocampal. Yet, inter-areal ensembles with members from both hippocampus and cortex have weak tuning to sharp wave ripples, and some have unusual months-long lifetimes. Such inter-areal ensembles occasionally remain inactive for weeks before re-emerging.


Assuntos
Encéfalo , Eletrodos Implantados , Hipocampo , Neurônios , Animais , Neurônios/fisiologia , Encéfalo/fisiologia , Encéfalo/citologia , Hipocampo/fisiologia , Hipocampo/citologia , Masculino , Ratos , Razão Sinal-Ruído , Potenciais de Ação/fisiologia , Camundongos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia
2.
Brain Struct Funct ; 226(6): 1803-1821, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34021788

RESUMO

Basal forebrain (BF) cholinergic neurons provide the cerebral cortex with acetylcholine. Despite the long-established involvement of these cells in sensory processing, attention, and memory, the mechanisms by which cholinergic signaling regulates cognitive processes remain elusive. In this study, we recorded spiking and local field potential data simultaneously from several locations in the BF, and sites in the orbitofrontal and visual cortex in transgenic ChAT-Cre rats performing a visual discrimination task. We observed distinct differences in the fine spatial distributions of gamma coherence values between specific basalo-cortical and cortico-cortical sites that shifted across task phases. Additionally, cholinergic firing induced spatial changes in cortical gamma power, and optogenetic activation of BF increased coherence between specific cortico-cortical sites, suggesting that the cholinergic system contributes to selective modulation of cortico-cortical circuits. Furthermore, the results suggest that cells in specific BF locations are dynamically recruited across behavioral epochs to coordinate interregional cortical processes underlying cognition.


Assuntos
Prosencéfalo Basal , Animais , Prosencéfalo Basal/metabolismo , Colina O-Acetiltransferase/metabolismo , Colinérgicos , Neurônios Colinérgicos/metabolismo , Optogenética , Ratos
3.
Sci Rep ; 11(1): 692, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436892

RESUMO

Retinal detachment (RD) causes damage, including disjunction, of the rod photoreceptor-bipolar synapse, which disrupts vision and may contribute to the poor visual recovery observed after retinal reattachment surgery. We created a model of iatrogenic RD in adult female pigs to study damage to the rod-bipolar synapse after injury and the ability of a highly specific Rho-kinase (ROCK) inhibitor to preserve synaptic structure and function. This model mimics procedures used in humans when viral vectors or cells are injected subretinally for treatment of retinal disease. Synaptic disjunction by retraction of rod spherules, quantified by image analysis of confocal sections, was present 2 h after detachment and remained 2 days later even though the retina had spontaneously reattached by then. Moreover, spherule retraction occurred in attached retina 1-2 cms from detached retina. Synaptic damage was significantly reduced by ROCK inhibition in detached retina whether injected subretinally or intravitreally. Dark-adapted full-field electroretinograms were recorded in reattached retinas to assess rod-specific function. Reduction in synaptic injury correlated with increases in rod-driven responses in drug-treated eyes. Thus, ROCK inhibition helps prevent synaptic damage and improves functional outcomes after retinal injury and may be a useful adjunctive treatment in iatrogenic RD and other retinal degenerative diseases.


Assuntos
Modelos Animais de Doenças , Traumatismos Oculares/complicações , Inibidores de Proteínas Quinases/farmacologia , Descolamento Retiniano/prevenção & controle , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Animais , Feminino , Descolamento Retiniano/etiologia , Descolamento Retiniano/patologia , Suínos
4.
J Neurosci ; 38(44): 9446-9458, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381436

RESUMO

Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.


Assuntos
Prosencéfalo Basal/metabolismo , Córtex Cerebral/metabolismo , Neurônios Colinérgicos/metabolismo , Cognição/fisiologia , Rede Nervosa/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Envelhecimento/psicologia , Animais , Prosencéfalo Basal/patologia , Córtex Cerebral/patologia , Neurônios Colinérgicos/patologia , Demência/diagnóstico , Demência/fisiopatologia , Demência/psicologia , Humanos , Rede Nervosa/patologia
5.
Behav Brain Res ; 307: 65-72, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27036646

RESUMO

BACKGROUND: Psychiatric disorders are frequently accompanied by changes in brain electrical oscillations and abnormal auditory event related potentials. The goal of this study was to characterize these parameters of a new rat substrain showing several alterations related to schizophrenia. METHODS: Male rats of the new substrain, developed by selective breeding after combined subchronic ketamine treatment and postweaning social isolation, and naive Wistar ones group-housed without any interventions were involved in the present study. At the age of 3 months, animals were implanted with cortical electroencephalography electrodes. Auditory evoked potentials during paired-click stimuli and power of oscillation in different frequency bands were determined with and without acute ketamine (20mg/kg) treatment. RESULTS: Regarding the auditory evoked potentials, the latency of P2 was delayed and the amplitude of N1 peak was lower in the new substrain. The new substrain showed increased power of oscillations in the theta, alpha and beta bands, while decreased power was detected in delta and gamma2 bands (52-70Hz) compared with control animals. Acute ketamine treatment increased the gamma1 band (30-48Hz) power in both groups, while it elicited significant changes only in the new substrain in the total power and in alpha, beta and gamma2 bands. CONCLUSIONS: The validation of the translational utility of this new rat substrain by electrophysiological investigations revealed that these rats show abnormalities that may model a part of the neurophysiological deficits observed in schizophrenia.


Assuntos
Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Esquizofrenia/fisiopatologia , Estimulação Acústica , Fatores Etários , Animais , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Análise de Fourier , Ketamina/toxicidade , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Ratos , Ratos Wistar , Esquizofrenia/etiologia , Isolamento Social/psicologia
6.
Epilepsia ; 57(5): 796-804, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26996827

RESUMO

OBJECTIVE: Absence seizures in patients with idiopathic generalized epilepsy (IGE) may in part be explained by a decrease in phasic GABAA (type-A γ-aminobutyric acid) receptor function, but the mechanisms are only partly understood. Here we studied the relation between ictal and interictal spike-wave discharges (SWDs) and electroencephalography (EEG) gamma oscillatory activity (30-60 Hz) in patients with IGE. METHODS: EEG recordings were obtained of 14 children with IGE (mean age, 8.5 ± 5 years) and 14 age- and sex-matched controls. Time-frequency analysis of each seizure and seizure-free control epochs was performed and cross-coherences of neocortical gamma oscillations were calculated to describe interictal and ictal characteristics of generalized seizures. RESULTS: SWDs were characterized with an abrupt increase of oscillatory activity of 3-4 and 13-60 Hz, peaking at 3-4 and 30-60 Hz, and with a simultaneous decrease in the 8-12 Hz frequency band. The rise in EEG gamma oscillations was short-lasting and decreased before activity declined at lower frequency ranges. Compared to control patients, patients with epilepsy also showed higher interictal values of mean coherence of gamma activity, but this interictal increase was not significant after post hoc analysis. SIGNIFICANCE: Our data support the hypothesis that gamma oscillatory activity increase concomitantly with rises in activity of lower EEG frequencies during absence seizures and that the activity starts to cease earlier than lower EEG frequencies. The data did not support a change in gamma activity preceding the 3-4 Hz SWDs. SWDs are hypothetically generated by the synchronous interaction between the thalamus and the cortex, whereas the production of gamma activity is the result of activity in local inhibitory networks. Thus, the modification of SWD by gamma activity may be understood in terms of the cellular and synaptic mechanisms involved.


Assuntos
Epilepsia Generalizada/patologia , Ritmo Gama/fisiologia , Neocórtex/fisiopatologia , Adolescente , Anticonvulsivantes/uso terapêutico , Mapeamento Encefálico , Estudos de Casos e Controles , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia Generalizada/tratamento farmacológico , Feminino , Ritmo Gama/efeitos dos fármacos , Humanos , Masculino , Estudos Retrospectivos
7.
PLoS One ; 10(11): e0142526, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544604

RESUMO

Beside its motor functions, the caudate nucleus (CN), the main input structure of the basal ganglia, is also sensitive to various sensory modalities. The goal of the present study was to investigate the effects of visual stimulation on the CN by using a behaving, head-restrained, eye movement-controlled feline model developed recently for this purpose. Extracellular multielectrode recordings were made from the CN of two cats in a visual fixation paradigm applying static and dynamic stimuli. The recorded neurons were classified in three groups according to their electrophysiological properties: phasically active (PAN), tonically active (TAN) and high-firing (HFN) neurons. The response characteristics were investigated according to this classification. The PAN and TAN neurons were sensitive primarily to static stimuli, while the HFN neurons responded primarily to changes in the visual environment i.e. to optic flow and the offset of the stimuli. The HFNs were the most sensitive to visual stimulation; their responses were stronger than those of the PANs and TANs. The majority of the recorded units were insensitive to the direction of the optic flow, regardless of group, but a small number of direction-sensitive neurons were also found. Our results demonstrate that both the static and the dynamic components of the visual information are represented in the CN. Furthermore, these results provide the first piece of evidence on optic flow processing in the CN, which, in more general terms, indicates the possible role of this structure in dynamic visual information processing.


Assuntos
Comportamento Animal/fisiologia , Núcleo Caudado/citologia , Núcleo Caudado/fisiologia , Fixação Ocular/fisiologia , Neurônios/citologia , Animais , Gatos , Fluxo Óptico/fisiologia , Estimulação Luminosa
8.
J Neurosci Methods ; 221: 1-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24056229

RESUMO

BACKGROUND: Anesthetized, paralyzed domestic cats are often used as model organisms in visual neurophysiology. However, in the last few decades, behaving animal models have gathered ground in neurophysiology, due to their advantages over anesthetized, paralyzed models. NEW METHOD: In the present study a new, behaving, awake feline model is described, which is suitable for chronic visual electrophysiological recordings. Two trained, head- fixed cats were suspended in a canvas harness in a specially designed stand. The animals had been trained to fixate the center of a monitor during static and dynamic visual stimulation. Eye movements were monitored with implanted scleral coil in a magnetic field. Cell-level activity was recorded with eight electrodes implanted in the caudate nucleus. RESULTS: Our two trained cats could maintain accurate fixation, even during optic flow stimulation, in an acceptance window of ±2.5° and ±1.5°, respectively. The model has yielded accurate recordings for over two years. COMPARISON WITH EXISTING METHOD(S): To our knowledge, this is the first awake, behaving feline model with rigorous eye movement control for chronic, cell-level visual electrophysiological recordings, which has actually proven to work during a longer period. CONCLUSIONS: The new model is optimal for chronic visual electrophysiological recordings in the awake, behaving domestic cat.


Assuntos
Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Movimentos Oculares , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Vigília/fisiologia , Animais , Gatos , Feminino
9.
Brain Res ; 1418: 52-63, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21924706

RESUMO

Recent morphological and physiological studies have suggested a strong relationship between the suprageniculate nucleus (Sg) of the posterior thalamus and the input structure of the basal ganglia, the caudate nucleus (CN) of the feline brain. Accordingly, to clarify if there is a real functional relationship between Sg and CN during visual information processing, we investigated the temporal relations of simultaneously recorded neuronal spike trains of these two structures, looking for any significant cross-correlation between the spiking of the simultaneously recorded neurons. For the purposes of statistical analysis, we used the shuffle and jittering resampling methods. Of the recorded 288 Sg-CN neuron pairs, 26 (9.2%) showed significantly correlated spontaneous activity. Nineteen pairs (6.7%) showed correlated activity during stationary visual stimulation, while 21 (7.4%) pairs during stimulus movement. There was no overlap between the neuron pairs that showed cross-correlated spontaneous activity and the pairs that synchronized their activity during visual stimulation. Thus visual stimulation seems to have been able to synchronize, and also, by other neuron pairs, desynchronize the activity of CN and Sg. In about half of the cases, the activation of Sg preceded the activation of CN by a few milliseconds, while in the other half, CN was activated earlier. Our results provide the first piece of evidence for the existence of a functional cooperation between Sg and CN. We argue that either a monosynaptic bidirectional direct connection should exist between these structures, or a common input comprising of parallel pathways synchronizing them.


Assuntos
Potenciais de Ação/fisiologia , Núcleo Caudado/citologia , Neurônios/fisiologia , Núcleos Posteriores do Tálamo/citologia , Vias Visuais/fisiologia , Animais , Gatos , Feminino , Masculino , Estimulação Luminosa/métodos , Tempo de Reação , Estatística como Assunto
10.
Artigo em Inglês | MEDLINE | ID: mdl-19964715

RESUMO

Single unit activity (SUA) was extensively studied in the lateral geniculate nucleus (LGN) but less attention was paid to the analysis of the local field potentials (LFP). In the present study, we investigate how and to what extent LFP and SUA correlate with visual stimulus eccentricity. SUAs and LFPs recorded extracellularly from 52 electrode positions were analyzed. Both LFP and SUA recordings contained well defined time-segments, which correlated with stimulus eccentricity. The spectral analysis of the LFPs indicated that in addition to the phasic, short latency activity of the 20 Hz frequency band, a tonic, 2-10 Hz, elongated component was also present. The time-domain analysis of the phasic and tonic LFP segments revealed a non-linear decrease of the mean LFP amplitude. The frequency-domain investigation made it obvious that the low and high frequency components exhibit a spatially localized increase of the response, in contrast to the time-domain curve. Our results confirm that the local field potentials as a measure of the mesoscopic level neuronal activity provide additional information concerning the activity of neuronal populations, thus enhancing our present knowledge about the functional circuitry as the foundation of various neuronal processes.


Assuntos
Corpos Geniculados/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Animais , Gatos , Fatores de Tempo , Campos Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...