Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 15(11): 1317-27, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24161932

RESUMO

Both subunits of αß-tubulin that comprise the core components of microtubules bind GTP. GTP binding to α-tubulin has a structural role, whereas ß-tubulin binds and hydrolyses GTP to regulate microtubule dynamics. γ-tubulin, another member of the tubulin superfamily that seeds microtubule nucleation at microtubule-organizing centres, also binds GTP; however, the importance of this association remains elusive. To address the role of GTP binding to γ-tubulin, we systematically mutagenized the GTP contact residues in the yeast γ-tubulin Tub4. Tub4(GTP)-mutant proteins that exhibited greatly reduced GTP affinity still assembled into the small γ-tubulin complex. However, tub4(GTP) mutants were no longer viable, and had defects in interaction between γ-tubulin and αß-tubulin, decreased microtubule nucleation and defects in microtubule organization. In vitro and in vivo data show that only γ-tubulin loaded with GTP nucleates microtubules. Our results suggest that GTP recruitment to γ-tubulin enhances its interaction with αß-tubulin similarly to GTP recruitment to ß-tubulin.


Assuntos
Guanosina Trifosfato/fisiologia , Microtúbulos/fisiologia , Tubulina (Proteína)/fisiologia , Modelos Moleculares , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Tubulina (Proteína)/química
2.
J Cell Biol ; 197(1): 59-74, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22472440

RESUMO

γ-Tubulin complexes are essential for microtubule (MT) nucleation. The γ-tubulin small complex (γ-TuSC) consists of two molecules of γ-tubulin and one molecule each of Spc97 and Spc98. In vitro, γ-TuSCs oligomerize into spirals of 13 γ-tubulin molecules per turn. However, the properties and numbers of γ-TuSCs at MT nucleation sites in vivo are unclear. In this paper, we show by fluorescence recovery after photobleaching analysis that γ-tubulin was stably integrated into MT nucleation sites and was further stabilized by tubulin binding. Importantly, tubulin showed a stronger interaction with the nucleation site than with the MT plus end, which probably provides the basis for MT nucleation. Quantitative analysis of γ-TuSCs on single MT minus ends argued for nucleation sites consisting of approximately seven γ-TuSCs with approximately three additional γ-tubulin molecules. Nucleation and anchoring of MTs required the same number of γ-tubulin molecules. We suggest that a spiral of seven γ-TuSCs with a slight surplus of γ-tubulin nucleates MTs in vivo.


Assuntos
Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Ciclo Celular , Citoplasma/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
3.
PLoS One ; 6(5): e19700, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21573187

RESUMO

The yeast γ-tubulin Tub4 is assembled with Spc97 and Spc98 into the small Tub4 complex. The Tub4 complex binds via the receptor proteins Spc72 and Spc110 to the spindle pole body (SPB), the functional equivalent of the mammalian centrosome, where the Tub4 complex organizes cytoplasmic and nuclear microtubules. Little is known about the regulation of the Tub4 complex. Here, we isolated the Tub4 complex with the bound receptors from yeast cells. Analysis of the purified Tub4 complex by mass spectrometry identified more than 50 phosphorylation sites in Spc72, Spc97, Spc98, Spc110 and Tub4. To examine the functional relevance of the phosphorylation sites, phospho-mimicking and non-phosphorylatable mutations in Tub4, Spc97 and Spc98 were analyzed. Three phosphorylation sites in Tub4 were found to be critical for Tub4 stability and microtubule organization. One of the sites is highly conserved in γ-tubulins from yeast to human.


Assuntos
Microtúbulos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas de Ligação a Calmodulina , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Humanos , Ácidos Indolacéticos/farmacologia , Proteínas Mad2 , Viabilidade Microbiana/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Tubulina (Proteína)/química
4.
J Cell Biol ; 189(1): 41-56, 2010 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-20368617

RESUMO

Mps1 is a conserved kinase that in budding yeast functions in duplication of the spindle pole body (SPB), spindle checkpoint activation, and kinetochore biorientation. The identity of Mps1 targets and the subdomains that convey specificity remain largely unexplored. Using a novel combination of systematic deletion analysis and chemical biology, we identified two regions within the N terminus of Mps1 that are essential for either SPB duplication or kinetochore biorientation. Suppression analysis of the MPS1 mutants defective in SPB duplication and biochemical enrichment of Mps1 identified the essential SPB components Spc29 and the yeast centrin Cdc31 as Mps1 targets in SPB duplication. Our data suggest that phosphorylation of Spc29 by Mps1 in G1/S recruits the Mps2-Bbp1 complex to the newly formed SPB to facilitate its insertion into the nuclear envelope. Mps1 phosphorylation of Cdc31 at the conserved T110 residue controls substrate binding to Kar1 protein. These findings explain the multiple SPB duplication defects of mps1 mutants on a molecular level.


Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo
5.
Biochemistry ; 48(24): 5689-99, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19432419

RESUMO

Beta(2)-microglobulin- (beta2m-) based fibril deposition is the key symptom in dialysis-related amyloidosis. beta2m readily forms amyloid fibrils in vitro at pH 2.5. However, it is not well understood which factors promote this process in vivo, because beta2m cannot polymerize at neutral pH without additives even at elevated concentration. Here we show that lysophosphatidic acid (LPA), an in vivo occurring lysophospholipid mediator, promotes amyloid formation under physiological conditions through a complex mechanism. In the presence of LPA, at and above its critical micelle concentration, native beta2m became sensitive to limited proteolytic digestion, indicating increased conformational flexibility. Isothermal titration calorimetry indicates that beta2m exhibits high affinity for LPA. Fluorescence and CD spectroscopy, as well as calorimetry, showed that LPA destabilizes the structure of monomeric beta2m inducing a partially unfolded form. This intermediate is capable of fibril extension in a nucleation-dependent manner. Our findings also indicate that the molecular organization of fibrils formed under physiological conditions differs from that of fibrils formed at pH 2.5. Fibrils grown in the presence of LPA depolymerize very slowly in the absence of LPA; moreover, LPA stabilizes the fibrils even below its critical micelle concentration. Neither the amyloidogenic nor the fibril-stabilizing effects of LPA were mimicked by its structural and functional lysophospholipid analogues, showing its selectivity. On the basis of our findings and the observed increase in blood LPA levels in dialysis patients, we suggest that the interaction of LPA with beta2m might contribute to the pathomechanism of dialysis-related amyloidosis.


Assuntos
Amiloide/química , Lisofosfolipídeos/farmacologia , Microglobulina beta-2/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Sítios de Ligação , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Modelos Moleculares , Concentração Osmolar , Dobramento de Proteína , Estrutura Secundária de Proteína , Temperatura , Microglobulina beta-2/metabolismo , Microglobulina beta-2/ultraestrutura
6.
Biochemistry ; 47(6): 1675-84, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18193894

RESUMO

Trypsin-like serine proteases play essential roles in diverse physiological processes such as hemostasis, apoptosis, signal transduction, reproduction, immune response, matrix remodeling, development, and differentiation. All of these proteases share an intriguing activation mechanism that involves the transition of an unfolded domain (activation domain) of the zymogen to a folded one in the active enzyme. During this conformational change, activation domain segments move around highly conserved glycine hinges. In the present study, hinge glycines were replaced by alanine residues via site directed mutagenesis. The effects of these mutations on the interconversion of the zymogen-like and active conformations as well as on catalytic activity were studied. Mutant trypsins showed zymogen-like structures to varying extents characterized by increased flexibility of some activation domain segments, a more accessible N-terminus and a deformed substrate binding site. Our results suggest that the trypsinogen to trypsin transition is hindered by the mutations, which results in a shift of the equilibrium between the inactive zymogen-like and active enzyme conformations toward the inactive state. Our data also showed, however, that the inactive conformations of the various mutants differ from each other. Binding of substrate analogues shifted the conformational equilibrium toward the active enzyme since inhibited forms of the trypsin mutants showed similar structural features as the wild-type enzyme. The catalytic activity of the mutants correlated with the proper conformation of the active site, which could be supported by varying conformations of the N-terminus and the autolysis loop. Transient kinetic measurements confirmed the existence of an inactive to active conformational transition occurring prior to substrate binding.


Assuntos
Glicina/metabolismo , Tripsina/metabolismo , Sequência de Bases , Sítios de Ligação , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Primers do DNA , Hidrólise , Cinética , Modelos Moleculares , Tripsina/química
7.
Proteins ; 67(4): 1119-27, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17436323

RESUMO

Upon activation of trypsinogen four peptide segments flanked by hinge glycine residues undergo conformational changes. To test whether the degree of conformational freedom of hinge regions affects the rate of activation, we introduced amino acid side chains of different characters at one of the hinges (position 193) and studied their effects on the rate constant of the conformational change. This structural rearrangement leading to activation was triggered by a pH-jump and monitored by intrinsic fluorescence change in the stopped-flow apparatus. We found that an increase in the size of the side chain at position 193 is associated with the decrease of the reaction rate constant. To analyze the thermodynamics of the reaction, temperature dependence of the reaction rate constants was examined in a wide temperature range (5-60 degrees C) using a novel temperature-jump/stopped-flow apparatus developed in our laboratory. Our data show that the mutations do not affect the activation energy (the exponential term) of the reaction, but they significantly alter the preexponential term of the Arrhenius equation. The effect of solvent viscosity on the rate constants of the conformational change during activation of the wild type enzyme and its R193G and R193A mutants was determined and evaluated on the basis of Kramers' theory. Based on this we propose that the reaction rate of this conformational transition is regulated by the internal molecular friction, which can be specifically modulated by mutagenesis in the hinge region.


Assuntos
Tripsina/química , Tripsina/metabolismo , Ativação Enzimática , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Especificidade por Substrato , Termodinâmica , Tripsina/genética , Viscosidade
8.
J Biol Chem ; 281(18): 12596-602, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16492676

RESUMO

Human trypsin 4 is an unconventional serine protease that possesses an arginine at position 193 in place of the highly conserved glycine. Although this single amino acid substitution does not affect steady-state activity on small synthetic substrates, it has dramatic effects on zymogen activation, interaction with canonical inhibitors, and substrate specificity toward macromolecular substrates. To study the effect of a non-glycine residue at position 193 on the mechanism of the individual enzymatic reaction steps, we expressed wild type human trypsin 4 and its R193G mutant. 4-Methylumbelliferyl 4-guanidinobenzoate has been chosen as a substrate analogue, where deacylation is rate-limiting, and transient kinetic methods were used to monitor the reactions. This experimental system allows for the separation of the individual reaction steps during substrate hydrolysis and the determination of their rate constants dependably. We suggest a refined model for the reaction mechanism, in which acylation is preceded by the reversible formation of the first tetrahedral intermediate. Furthermore, the thermodynamics of these steps were also investigated. The formation of the first tetrahedral intermediate is highly exothermic and accompanied by a large entropy decrease for the wild type enzyme, whereas the signs of the enthalpy and entropy changes are opposite and smaller for the R193G mutant. This difference in the energetic profiles indicates much more extended structural and/or dynamic rearrangements in the equilibrium step of the first tetrahedral intermediate formation in wild type human trypsin 4 than in the R193G mutant enzyme, which may contribute to the biological function of this protease.


Assuntos
Encéfalo/metabolismo , Himecromona/análogos & derivados , Tripsina/química , Acilação , Entropia , Glicina/química , Temperatura Alta , Humanos , Hidrólise , Himecromona/química , Cinética , Conformação Molecular , Mutação , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA