Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 123: 138-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26905205

RESUMO

The Reduviid Triatoma infestans is a vector for the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. The parasite must address the defense molecules and microbiota that colonize the anterior midgut of T. infestans. To obtain insight into T. cruzi - microbiota interactions in triatomine insects, we characterized a new antimicrobial product from the anterior midgut of T. infestans (TiAP) that may be involved in these relationships. The TiAP DNA fragment was cloned and expressed in a bacterial system, and the effect of the protein on bacteria and T. cruzi was evaluated by RNAi, qPCR and antimicrobial experiments. The number of T. cruzi in T. infestans anterior midguts was significantly lower in TiAP knockdown insects than in unsilenced groups. We also verified that the amount of bacteria in silenced T. infestans is approximately 600-fold higher than in unsilenced insects by qPCR. The 327-bp cDNA fragment that encodes mature TiAP was cloned into the pET-14b vector and expressed fused to a His-tag in Escherichia coli C43. The recombinant protein (rTiAP) was purified using an Ni-NTA column, followed by a HiTrap SP column. According to a trypanocidal assay, rTiAP did not interfere with the viability of T. cruzi trypomastigotes. Moreover, in antimicrobial experiments using E. coli and Micrococcus luteus, the protein was only bacteriostatic for Gram-negative bacteria. The data indicate that infection by T. cruzi increases the expression of TiAP to modulate the microbiota. The inhibition of microbiota growth by TiAP is important for parasite establishment in the T. infestans anterior midgut.


Assuntos
Anti-Infecciosos/farmacologia , Microbiota , Peptídeos/farmacologia , Triatoma/química , Trypanosoma cruzi/efeitos dos fármacos , Animais
2.
Biochimie ; 112: 41-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25731714

RESUMO

The triatomine insect, Rhodnius prolixus, is a vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. The parasite must overcome immune response and microbiota to develop inside the midgut of triatomines. In this study, we expressed, purified and characterized a Kazal-type inhibitor from the midgut of R. prolixus, named RpTI, which may be involved in microbiota - T. cruzi interactions. The qPCR showed that the RpTI transcript was primarily expressed in tissues from the intestinal tract and that it was upregulated in the anterior midgut after T. cruzi infection. A 315-bp cDNA fragment encoding the mature protein was cloned into the pPIC9 vector and expressed in Pichia pastoris system. Recombinant RpTI (rRpTI) was purified on a trypsin-Sepharose column and had a molecular mass of 11.5 kDa as determined by SDS-PAGE analysis. This protein inhibited trypsin (Ki = 0.42 nM), whereas serine proteases from the coagulation cascade were not inhibited. Moreover, trypanocidal assays revealed that rRpTI did not interfere in the viability of T. cruzi trypomastigotes. The RpTI transcript was also knocked down by RNA interference prior to infection of R. prolixus with T. cruzi. The amount of T. cruzi in the anterior midgut was significantly lower in RpTI knockdown insects compared to the non-silenced groups. We also verified that the bacterial load is higher in the anterior midgut of silenced and infected R. prolixus compared to non-silenced and infected insects. Our results suggest that T. cruzi infection increases the expression of RpTI to mediate microbiota modulation and is important for parasite immediately after infection with R. prolixus.


Assuntos
Proteínas de Insetos , Insetos Vetores , Intestinos/microbiologia , Microbiota , Rhodnius , Trypanosoma cruzi/metabolismo , Inibidor da Tripsina Pancreática de Kazal , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/genética , Insetos Vetores/metabolismo , Insetos Vetores/microbiologia , Rhodnius/genética , Rhodnius/metabolismo , Rhodnius/microbiologia , Inibidor da Tripsina Pancreática de Kazal/genética , Inibidor da Tripsina Pancreática de Kazal/metabolismo
3.
PLoS One ; 8(5): e61203, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658688

RESUMO

Chagas disease, or American trypanosomiasis, is a parasitic disease caused by the protozoan Trypanosoma cruzi and is transmitted by insects from the Triatominae subfamily. To identify components involved in the protozoan-vector relationship, we constructed and analyzed cDNA libraries from RNA isolated from the midguts of uninfected and T. cruzi-infected Triatoma infestans, which are major vectors of Chagas disease. We generated approximately 440 high-quality Expressed Sequence Tags (ESTs) from each T. infestans midgut cDNA library. The sequences were grouped in 380 clusters, representing an average length of 664.78 base pairs (bp). Many clusters were not classified functionally, representing unknown transcripts. Several transcripts involved in different processes (e.g., detoxification) showed differential expression in response to T. cruzi infection. Lysozyme, cathepsin D, a nitrophorin-like protein and a putative 14 kDa protein were significantly upregulated upon infection, whereas thioredoxin reductase was downregulated. In addition, we identified several transcripts related to metabolic processes or immunity with unchanged expressions, including infestin, lipocalins and defensins. We also detected ESTs encoding juvenile hormone binding protein (JHBP), which seems to be involved in insect development and could be a target in control strategies for the vector. This work demonstrates differential gene expression upon T. cruzi infection in the midgut of T. infestans. These data expand the current knowledge regarding vector-parasite interactions for Chagas disease.


Assuntos
Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Intestinos/parasitologia , Triatoma/genética , Triatoma/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Clonagem Molecular , DNA Complementar/genética , Interações Hospedeiro-Parasita/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
4.
PLoS One ; 7(6): e39885, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768154

RESUMO

Dental pulp (DP) can be extracted from child's primary teeth (deciduous), whose loss occurs spontaneously by about 5 to 12 years. Thus, DP presents an easy accessible source of stem cells without ethical concerns. Substantial quantities of stem cells of an excellent quality and at early (2-5) passages are necessary for clinical use, which currently is a problem for use of adult stem cells. Herein, DPs were cultured generating stem cells at least during six months through multiple mechanical transfers into a new culture dish every 3-4 days. We compared stem cells isolated from the same DP before (early population, EP) and six months after several mechanical transfers (late population, LP). No changes, in both EP and LP, were observed in morphology, expression of stem cells markers (nestin, vimentin, fibronectin, SH2, SH3 and Oct3/4), chondrogenic and myogenic differentiation potential, even after cryopreservation. Six hours after DP extraction and in vitro plating, rare 5-bromo-2'-deoxyuridine (BrdU) positive cells were observed in pulp central part. After 72 hours, BrdU positive cells increased in number and were found in DP periphery, thus originating a multicellular population of stem cells of high purity. Multiple stem cell niches were identified in different zones of DP, because abundant expression of nestin, vimentin and Oct3/4 proteins was observed, while STRO-1 protein localization was restricted to perivascular niche. Our finding is of importance for the future of stem cell therapies, providing scaling-up of stem cells at early passages with minimum risk of losing their "stemness".


Assuntos
Separação Celular/métodos , Polpa Dentária/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Contagem de Células , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Criança , Condrogênese/efeitos dos fármacos , Meios de Cultura/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...