Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 94(5): 1834-43, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27285681

RESUMO

Very few studies have been conducted to infer genotype × environment interaction (G×E) based in genomic prediction models using SNP markers. Therefore, our main objective was to compare a conventional genomic-based single-step model (HBLUP) with its reaction norm model extension (genomic 1-step linear reaction norm model [HLRNM]) to provide EBV for tick resistance as well as to compare predictive performance of these models with counterpart models that ignore SNP marker information, that is, a linear animal model (ABLUP) and its reaction norm extension (1-step linear reaction norm model [ALRNM]). Phenotypes included 10,673 tick counts on 4,363 Hereford and Braford animals, of which 3,591 were genotyped. Using the deviance information criterion for model choice, ABLUP and HBLUP seemed to be poorer fitting in comparison with their respective genomic model extensions. The HLRNM estimated lower average and reaction norm genetic variability compared with the ALRNM, whereas ABLUP and HBLUP seemed to be poorer fitting in comparison with their respective genomic reaction norm model extensions. Heritability and repeatability estimates varied along the environmental gradient (EG) and the genetic correlations were remarkably low between high and low EG, indicating the presence of G×E for tick resistance in these populations. Based on 5-fold -means partitioning, mean cross-validation estimates with their respective SE of predictive accuracy were 0.66 (SE 0.02), 0.67 (SE 0.02), 0.67 (SE 0.02), and 0.66 (SE 0.02) for ABLUP, HBLUP, HLRNM, and ALRNM, respectively. For 5-fold random partitioning, HLRNM (0.71 ± 0.01) was statistically different from ABLUP (0.67 ± 0.01). However, no statistical significance was reported when considering HBLUP (0.70 ± 0.01) and ALRNM (0.70 ± 0.01). Our results suggest that SNP marker information does not lead to higher prediction accuracies in reaction norm models. Furthermore, these accuracies decreased as the tick infestation level increased and as the relationship between animals in training and validation data sets decreased.


Assuntos
Doenças dos Bovinos/imunologia , Bovinos/genética , Interação Gene-Ambiente , Genoma/genética , Polimorfismo de Nucleotídeo Único/genética , Infestações por Carrapato/veterinária , Animais , Cruzamento , Bovinos/imunologia , Feminino , Genômica , Genótipo , Modelos Lineares , Masculino , Fenótipo , Infestações por Carrapato/imunologia , Carrapatos/fisiologia
2.
J Anim Sci ; 93(6): 2693-705, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26115257

RESUMO

One of the main animal health problems in tropical and subtropical cattle production is the bovine tick, which causes decreased performance, hide devaluation, increased production costs with acaricide treatments, and transmission of infectious diseases. This study investigated the utility of genomic prediction as a tool to select Braford (BO) and Hereford (HH) cattle resistant to ticks. The accuracy and bias of different methods for direct and blended genomic prediction was assessed using 10,673 tick counts obtained from 3,435 BO and 928 HH cattle belonging to the Delta G Connection breeding program. A subset of 2,803 BO and 652 HH samples were genotyped and 41,045 markers remained after quality control. Log transformed records were adjusted by a pedigree repeatability model to estimate variance components, genetic parameters, and breeding values (EBV) and subsequently used to obtain deregressed EBV. Estimated heritability and repeatability for tick counts were 0.19 ± 0.03 and 0.29 ± 0.01, respectively. Data were split into 5 subsets using k-means and random clustering for cross-validation of genomic predictions. Depending on the method, direct genomic value (DGV) prediction accuracies ranged from 0.35 with Bayes least absolute shrinkage and selection operator (LASSO) to 0.39 with BayesB for k-means clustering and between 0.42 with BayesLASSO and 0.45 with BayesC for random clustering. All genomic methods were superior to pedigree BLUP (PBLUP) accuracies of 0.26 for k-means and 0.29 for random groups, with highest accuracy gains obtained with BayesB (39%) for k-means and BayesC (55%) for random groups. Blending of historical phenotypic and pedigree information by different methods further increased DGV accuracies by values between 0.03 and 0.05 for direct prediction methods. However, highest accuracy was observed with single-step genomic BLUP with values of 0.48 for -means and 0.56, which represent, respectively, 84 and 93% improvement over PBLUP. Observed random clustering cross-validation breed-specific accuracies ranged between 0.29 and 0.36 for HH and between 0.55 and 0.61 for BO, depending on the blending method. These moderately high values for BO demonstrate that genomic predictions could be used as a practical tool to improve genetic resistance to ticks and in the development of resistant lines of this breed. For HH, accuracies are still in the low to moderate side and this breed training population needs to be increased before genomic selection could be reliably applied to improve tick resistance.


Assuntos
Doenças dos Bovinos/parasitologia , Predisposição Genética para Doença , Genômica/métodos , Modelos Genéticos , Infestações por Carrapato/veterinária , Animais , Teorema de Bayes , Cruzamento , Bovinos , Doenças dos Bovinos/genética , Genoma , Genótipo , Característica Quantitativa Herdável , Infestações por Carrapato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA