Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 25169-25180, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695741

RESUMO

Additive manufacturing holds promise for rapid prototyping and low-cost production of biosensors for diverse pathogens. Among additive manufacturing methods, screen printing is particularly desirable for high-throughput production of sensing platforms. However, this technique needs to be combined with carefully formulated inks, rapid postprocessing, and selective functionalization to meet all requirements for high-performance biosensing applications. Here, we present screen-printed graphene electrodes that are processed with thermal annealing to achieve high surface area and electrical conductivity for sensitive biodetection via electrochemical impedance spectroscopy. As a proof-of-concept, this biosensing platform is utilized for electrochemical detection of SARS-CoV-2. To ensure reliable specificity in the presence of multiple variants, biolayer interferometry (BLI) is used as a label-free and dynamic screening method to identify optimal antibodies for concurrent affinity to the Spike S1 proteins of Delta, Omicron, and Wild Type SARS-CoV-2 variants while maintaining low affinity to competing pathogens such as Influenza H1N1. The BLI-identified antibodies are robustly bound to the graphene electrode surface via oxygen moieties that are introduced during the thermal annealing process. The resulting electrochemical immunosensors achieve superior metrics including rapid detection (55 s readout following 15 min of incubation), low limits of detection (approaching 500 ag/mL for the Omicron variant), and high selectivity toward multiple variants. Importantly, the sensors perform well on clinical saliva samples detecting as few as 103 copies/mL of SARS-CoV-2 Omicron, following CDC protocols. The combination of the screen-printed graphene sensing platform and effective antibody selection using BLI can be generalized to a wide range of point-of-care immunosensors.


Assuntos
Técnicas Biossensoriais , Grafite , Interferometria , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Grafite/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Técnicas Biossensoriais/métodos , Humanos , Interferometria/instrumentação , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/diagnóstico , COVID-19/virologia , Eletrodos , Técnicas Eletroquímicas/métodos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/imunologia
2.
RSC Adv ; 13(25): 17244-17252, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37304770

RESUMO

Iron (Fe) is a required micronutrient in plants for the production of chlorophyll and transport of oxygen. A commonly used surrogate for measuring nutrient levels is the measurement of electrical conductivity or total dissolved solids, but this technique is not selective towards any particular dissolved ion. In this study, using a conventional microwave, fluorescent carbon dots (CDs) are produced from glucose and a household cleaning product and applied towards monitoring dissolved ferric iron levels in hydroponic systems through fluorescent quenching. The produced particles have an average size of 3.19 ± 0.76 nm with a relatively high degree of oxygen surface groups. When using an excitation of 405 nm, a broad emission peak is centered at approximately 500 nm. A limit-of-detection of 0.196 ± 0.067 ppm (3.51 ± 1.21 µM) with minimal interference from common heavy metal quenchers and ions found in hydroponic systems was determined. Butterhead lettuce was grown while discretely monitoring iron levels via the CDs for three separate weeks of growth. The CDs displayed a non-significant difference (p > 0.05) in performance when compared to a standard method. These results along with a simple and relatively low-cost production method make the CDs in this study a promising tool for monitoring iron levels in hydroponic systems.

3.
Sci Total Environ ; 877: 162837, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924958

RESUMO

Denitrification bioreactors are an effective edge-of-field conservation practice for nitrate (NO3) reduction from subsurface drainage. However, these systems may produce other pollutants and greenhouse gases during NO3 removal. Here a dual-chamber woodchip bioreactor system experiencing extreme low-flow conditions was monitored for its spatiotemporal NO3 and total organic carbon dynamics in the drainage water. Near complete removal of NO3 was observed in both bioreactor chambers in the first two years of monitoring (2019-2020) and in the third year of monitoring in chamber A, with significant (p < 0.01) reduction of the NO3-N each year in both chambers with 8.6-11.4 mg NO3-N L-1 removed on average. Based on the NO3 removal observed, spatial monitoring of sulfate (SO4), dissolved methane (CH4), and dissolved nitrous oxide (N2O) gases was added in the third year of monitoring (2021). In 2021, chambers A and B had median hydraulic residence times (HRTs) of 64 h and 39 h, respectively, due to varying elevations of the chambers, with drought conditions making the differences more pronounced. In 2021, significant production of dissolved CH4 was observed at rates of 0.54 g CH4-C m-3 d-1 and 0.07 g CH4-C m-3 d-1 in chambers A and B, respectively. In chamber A, significant removal (p < 0.01) of SO4 (0.23 g SO4 m-3 d-1) and dissolved N2O (0.21 mg N2O-N m-2 d-1) were observed, whereas chamber B produced N2O (0.36 mg N2O-N m-2 d-1). Considering the carbon dioxide equivalents (CO2e) on an annual basis, chamber A had loads (~12,000 kg CO2e ha-1 y-1) greater than comparable poorly drained agricultural soils; however, the landscape-scale impact was small (<1 % change in CO2e) when expressed over the drainage area treated by the bioreactor. Under low-flow conditions, pollution swapping in woodchip bioreactors can be reduced at HRTs <50 h and NO3 concentrations >2 mg N L-1.


Assuntos
Desnitrificação , Nitratos , Nitratos/análise , Reatores Biológicos , Óxido Nitroso , Poluição Ambiental
4.
Mikrochim Acta ; 190(1): 43, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595104

RESUMO

Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene (LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photometric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane. These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec-1, a detection limit of 0.3 ± 0.1 mg L-1 (mean ± standard deviation), and a broad linear sensing range from 10-5 to 10-1 M, which was significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg L-1 in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance.


Assuntos
Grafite , Eletrodos Seletivos de Íons , Humanos , Grafite/química , Nitritos , Água , Lasers
5.
Sci Rep ; 12(1): 21413, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496515

RESUMO

In this work, we demonstrate the development of a rapid and label-free electrochemical biosensor to detect Listeria monocytogenes using a novel stimulus-response thiomer nanobrush material. Nanobrushes were developed via one-step simultaneous co-deposition of nanoplatinum (Pt) and alginate thiomers (ALG-thiomer). ALG-thiomer/Pt nanobrush platform significantly increased the average electroactive surface area of electrodes by 7 folds and maintained the actuation properties (pH-stimulated osmotic swelling) of the alginate. Dielectric behavior during brush actuation was characterized with positively, neutral, and negatively charged redox probes above and below the isoelectric point of alginate, indicating ALG-thiomer surface charge plays an important role in signal acquisition. The ALG-thiomer platform was biofunctionalized with an aptamer selective for the internalin A protein on Listeria for biosensing applications. Aptamer loading was optimized and various cell capture strategies were investigated (brush extended versus collapsed). Maximum cell capture occurs when the ALG-thiomer/aptamer is in the extended conformation (pH > 3.5), followed by impedance measurement in the collapsed conformation (pH < 3.5). Low concentrations of bacteria (5 CFU mL-1) were sensed from a complex food matrix (chicken broth) and selectivity testing against other Gram-positive bacteria (Staphylococcus aureus) indicate the aptamer affinity is maintained, even at these pH values. The new hybrid soft material is among the most efficient and fastest (17 min) for L. monocytogenes biosensing to date, and does not require sample pretreatment, constituting a promising new material platform for sensing small molecules or cells.


Assuntos
Técnicas Biossensoriais , Listeria monocytogenes , Platina , Alginatos , Eletrodos
6.
2d Mater ; 9(3)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35785019

RESUMO

Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world-wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing (AJP) to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 Spike Receptor-Binding Domain (RBD) in saliva samples acquired non-invasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg/mL for Spike RBD and 110.38 ± 9.00 pg/mL for Spike S1) as well as fast response time (~30 mins), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng/mL and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests.

7.
Anal Bioanal Chem ; 414(16): 4591-4612, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35459968

RESUMO

This review discusses the most recent literature (mostly since 2019) on the presence and impact of microplastics (MPs, particle size of 1 µm to 5 mm) and nanoplastics (NPs, particle size of 1 to 1000 nm) throughout the agricultural and food supply chain, focusing on the methods and technologies for the detection and characterization of these materials at key entry points. Methods for the detection of M/NPs include electron and atomic force microscopy, vibrational spectroscopy (FTIR and Raman), hyperspectral (bright field and dark field) and fluorescence imaging, and pyrolysis-gas chromatography coupled to mass spectrometry. Microfluidic biosensors and risk assessment assays of MP/NP for in vitro, in vivo, and in silico models have also been used. Advantages and limitations of each method or approach in specific application scenarios are discussed to highlight the scientific and technological obstacles to be overcome in future research. Although progress in recent years has increased our understanding of the mechanisms and the extent to which MP/NP affects health and the environment, many challenges remain largely due to the lack of standardized and reliable detection and characterization methods. Most of the methods available today are low-throughput, which limits their practical application to food and agricultural samples. Development of rapid and high-throughput field-deployable methods for onsite screening of MP/NPs is therefore a high priority. Based on the current literature, we conclude that detecting the presence and understanding the impact of MP/NP throughout the agricultural and food supply chain require the development of novel deployable analytical methods and sensors, the combination of high-precision lab analysis with rapid onsite screening, and a data hub(s) that hosts and curates data for future analysis.


Assuntos
Microplásticos , Poluentes Químicos da Água , Agricultura , Cromatografia Gasosa-Espectrometria de Massas , Plásticos/análise , Medição de Risco , Poluentes Químicos da Água/análise
8.
Mikrochim Acta ; 189(3): 122, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218439

RESUMO

Current solid-contact ion-selective electrodes (ISEs) suffer from signal-to-noise drift and short lifespans partly due to water uptake and the development of an aqueous layer between the transducer and ion-selective membrane. To address these challenges, we report on a nitrate ISE based on hydrophobic laser-induced graphene (LIG) coated with a poly(vinyl) chloride-based nitrate selective membrane. The hydrophobic LIG was created using a polyimide substrate and a double lasing process under ambient conditions (air at 23.0 ± 1.0 °C) that resulted in a static water contact angle of 135.5 ± 0.7° (mean ± standard deviation) in wettability testing. The LIG-ISE displayed a Nernstian response of - 58.17 ± 4.21 mV dec-1 and a limit-of-detection (LOD) of 6.01 ± 1.44 µM. Constant current chronopotentiometry and a water layer test were used to evaluate the potential (emf) signal stability with similar performance to previously published work with graphene-based ISEs. Using a portable potentiostat, the sensor displayed comparable (p > 0.05) results to a US Environmental Protection Agency (EPA)-accepted analytical method when analyzing water samples collected from two lakes in Ames, IA. The sensors were stored in surface water samples for 5 weeks and displayed nonsignificant difference in performance (LOD and sensitivity). These results, combined with a rapid and low-cost fabrication technique, make the development of hydrophobic LIG-ISEs appealing for a wide range of long-term in situ surface water quality applications.

9.
ACS Nano ; 16(1): 15-28, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34812606

RESUMO

The integration of microfluidics and electrochemical cells is at the forefront of emerging sensors and energy systems; however, a fabrication scheme that can create both the microfluidics and electrochemical cells in a scalable fashion is still lacking. We present a one-step, mask-free process to create, pattern, and tune laser-induced graphene (LIG) with a ubiquitous CO2 laser. The laser parameters are adjusted to create LIG with different electrical conductivity, surface morphology, and surface wettability without the need for postchemical modification. Such definitive control over material properties enables the creation of LIG-based integrated open microfluidics and electrochemical sensors that are capable of dividing a single water sample along four multifurcating paths to three ion selective electrodes (ISEs) for potassium (K+), nitrate (NO3-), and ammonium (NH4+) monitoring and to an enzymatic pesticide sensor for organophosphate pesticide (parathion) monitoring. The ISEs displayed near-Nernstian sensitivities and low limits of detection (LODs) (10-5.01 M, 10-5.07 M, and 10-4.89 M for the K+, NO3-, and NH4+ ISEs, respectively) while the pesticide sensor exhibited the lowest LOD (15.4 pM) for an electrochemical parathion sensor to date. LIG was also specifically patterned and tuned to create a high-performance electrochemical micro supercapacitor (MSC) capable of improving the power density by 2 orders of magnitude compared to a Li-based thin-film battery and the energy density by 3 orders of magnitude compared to a commercial electrolytic capacitor. Hence, this tunable fabrication approach to LIG is expected to enable a wide range of real-time, point-of-use health and environmental sensors as well as energy storage/harvesting modules.


Assuntos
Grafite , Paration , Praguicidas , Grafite/química , Microfluídica , Eletrodos , Molhabilidade , Lasers , Condutividade Elétrica , Íons/química
10.
Biosensors (Basel) ; 11(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34940268

RESUMO

Bacterial contamination in food-processing facilities is a critical issue that leads to outbreaks compromising the integrity of the food supply and public health. We developed a label-free and rapid electrochemical biosensor for Listeria monocytogenes detection using a new one-step simultaneous sonoelectrodeposition of platinum and chitosan (CHI/Pt) to create a biomimetic nanostructure that actuates under pH changes. The XPS analysis shows the effective co-deposition of chitosan and platinum on the electrode surface. This deposition was optimized to enhance the electroactive surface area by 11 times compared with a bare platinum-iridium electrode (p < 0.05). Electrochemical behavior during chitosan actuation (pH-stimulated osmotic swelling) was characterized with three different redox probes (positive, neutral, and negative charge) above and below the isoelectric point of chitosan. These results showed that using a negatively charged redox probe led to the highest electroactive surface area, corroborating previous studies of stimulus-response polymers on metal electrodes. Following this material characterization, CHI/Pt brushes were functionalized with aptamers selective for L. monocytogenes capture. These aptasensors were functional at concentrations up to 106 CFU/mL with no preconcentration nor extraneous reagent addition. Selectivity was assessed in the presence of other Gram-positive bacteria (Staphylococcus aureus) and with a food product (chicken broth). Actuation led to improved L. monocytogenes detection with a low limit of detection (33 CFU/10 mL in chicken broth). The aptasensor developed herein offers a simple fabrication procedure with only one-step deposition followed by functionalization and rapid L. monocytogenes detection, with 15 min bacteria capture and 2 min sensing.


Assuntos
Técnicas Biossensoriais , Quitosana , Listeria monocytogenes , Microbiologia de Alimentos , Platina
11.
Polymers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502927

RESUMO

The impact of polymer-based slow-release urea formulations on soil microbial N dynamics in potatoes has been sparingly deciphered. The present study investigated the effect of a biodegradable nano-polymer urea formulation on soil enzymatic activities and microflora involved in the N cycling of potato (Solanum tuberosum L.). The nano-chitosan-urea composite (NCUC) treatment significantly increased the soil dehydrogenase activity, organic carbon content and available potassium compared to the conventional urea (CU) treatment. The soil ammonical nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) contents and urease activity were significantly decreased in the NCUC-amended soil. The slow urea hydrolysis rate led to low concentrations of NH4+-N and NO3--N in the tested potato soil. Furthermore, these results corroborate the low count of ammonia oxidizer and nitrate reducer populations. Quantitative PCR (q-PCR) studies revealed that the relative abundance of eubacterial (AOB) and archaeal ammonia-oxidizing (AOA) populations was reduced in the NCUC-treated soil compared to CU. The abundance of AOA was particularly lower than AOB, probably due to the more neutral and alkaline conditions of the tested soil. Our results suggest that the biodegradable polymer urea composite had a significant effect on the microbiota associated with soil N dynamics. Therefore, the developed NCUC could be used as a slow N-release fertilizer for enhanced growth and crop yields of potato.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34427159

RESUMO

Water reuse programs are being explored to close the gap between supply and demand for irrigation in agriculture. However, these sources could contain hazardous microbial contaminants, and pose risks to public health. This study aimed to grow and irrigate romaine lettuce with inoculated wastewater effluent to track AP205 bacteriophage prevalence through cultivation and post-harvest storage. AP205 is a bacteriophage and was used as a surrogate for enteric viruses. Low and high dosages (mean ± standard deviation) of AP205 at 4.8 ± 0.4 log PFU/mL and 6.6 ± 0.2 log PFU/mL; respectively, were prepared to examine viral load influence on contamination levels. Foliage, leachate, and soil contamination levels were directly related to AP205 concentrations in the effluent. AP205 concentrations increased throughout cultivation for foliage and leachate, suggesting bacteriophage accumulation. During post-harvest storage (14 day at 4 °C), there was a significant decrease in AP205 concentration on the foliage. Results show that wastewater effluents usage for leafy greens cultivation can pose risks to humans and additional steps are required to safely apply wastewater effluents to soils and crops.


Assuntos
Bacteriófagos , Enterovirus , Contaminação de Alimentos/análise , Humanos , Lactuca , Águas Residuárias
13.
Front Microbiol ; 12: 660047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093474

RESUMO

High demand for food and water encourages the exploration of new water reuse programs, including treated municipal wastewater usage. However, these sources could contain high contaminant levels posing risks to public health. The objective of this study was to grow and irrigate a leafy green (romaine lettuce) with treated wastewater from a municipal wastewater treatment plant to track Escherichia coli and antibiotic-resistant microorganisms through cultivation and post-harvest storage to assess their fate and prevalence. Contamination levels found in the foliage, leachate, and soil were directly (p < 0.05) related to E. coli concentrations in the irrigation water. Wastewater concentrations from 177 to 423 CFU ml-1 resulted in 15-25% retention in the foliage. Leachate and soil presented means of 231 and 116% retention, respectively. E. coli accumulation on the foliage was observed (p < 0.05) and increased by over 400% during 14-day storage (4°C). From randomly selected E. coli colonies, in all four biomass types, 81 and 34% showed resistance to ampicillin and cephalothin, respectively. Reclaimed wastewater usage for leafy greens cultivation could pose potential health risks, especially considering the bacteria found have a high probability of being antibiotic resistance. Successful reuse of wastewater in agriculture will depend on appropriate mitigation and management strategies to guarantee an inexpensive, efficient, and safe water supply.

14.
Analyst ; 146(12): 4033-4041, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34036979

RESUMO

Despite having widespread application in the biomedical sciences, flow cytometers have several limitations that prevent their application to point-of-care (POC) diagnostics in resource-limited environments. 3D printing provides a cost-effective approach to improve the accessibility of POC devices in resource-limited environments. Towards this goal, we introduce a 3D-printed imaging platform (3DPIP) capable of accurately counting particles and perform fluorescence microscopy. In our 3DPIP, captured microscopic images of particle flow are processed on a custom developed particle counter code to provide a particle count. This prototype uses a machine vision-based algorithm to identify particles from captured flow images and is flexible enough to allow for labeled and label-free particle counting. Additionally, the particle counter code returns particle coordinates with respect to time which can further be used to perform particle image velocimetry. These results can help estimate forces acting on particles, and identify and sort different types of cells/particles. We evaluated the performance of this prototype by counting 10 µm polystyrene particles diluted in deionized water at different concentrations and comparing the results with a commercial Beckman-Coulter Z2 particle counter. The 3DPIP can count particle concentrations down to ∼100 particles per mL with a standard deviation of ±20 particles, which is comparable to the results obtained on a commercial particle counter. Our platform produces accurate results at flow rates up to 9 mL h-1 for concentrations below 1000 particle per mL, while 5 mL h-1 produces accurate results above this concentration limit. Aside from performing flow-through experiments, our instrument is capable of performing static experiments that are comparable to a plate reader. In this configuration, our instrument is able to count between 10 and 250 cells per image, depending on the prepared concentration of bacteria samples (Citrobacter freundii; ATCC 8090). Overall, this platform represents a first step towards the development of an affordable fully 3D printable imaging flow cytometry instrument for use in resource-limited clinical environments.


Assuntos
Algoritmos , Impressão Tridimensional , Citometria de Fluxo , Microscopia de Fluorescência
15.
PLoS One ; 16(5): e0251786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34003829

RESUMO

This study aimed to elucidate the effects of selenium-loaded chitosan nanoparticles used as a dietary supplement on Nile tilapia (Oreochromis niloticus) antioxidant and growth responses. First, chitosan-based nanoparticles containing selenium (Se) were synthesized using the ionotropic gelation method and their physicochemical characteristics, controlled release profile, and antioxidant activity properties were investigated. Thereafter, the effects on glutathione peroxidase and antioxidant activities (by radical scavenging activity), growth, and whole-body composition of Nile tilapia were evaluated when they were fed with Se-loaded chitosan nanoparticles and compared with other selenium dietary supplements. Se-loaded chitosan nanoparticles showed high entrapment efficiency (87%), spherical shape, smooth surface, and broad size distribution. The controlled release of Se consisted of an initial burst followed by a gradual release over 48 h. Se-loaded nanoparticles presented significantly higher antioxidant activity compared to free Se. A 60-day feeding trial was conducted to compare the effects of supplementing different dietary Se sources, including selenomethionine (as organic source), sodium selenite (as inorganic source), and Se-loaded chitosan nanoparticles (Se-Nano and Se-Nano x1.5) on antioxidant and growth responses of Nile tilapia. A basal diet without Se supplementation was used as the control. The dietary supplementations with different Se sources (free and encapsulated selenium) lead to significant improvements in final weight and feed efficiency of Nile tilapia fingerlings. However, dietary treatments did not affect whole-body protein and lipid content. Diets containing Se-Nano and Se-Nano x1.5 were more effective than sodium selenite and selenomethionine in preventing oxidative stress and improving antioxidant activity in Nile tilapia. Overall, Se-loaded nanoparticles presented a great potential as an efficient source for delivering dietary Se to Nile tilapia, directly affecting the growth performance, feed efficiency, oxidative stress, and antioxidant activity of this species.


Assuntos
Ração Animal , Antioxidantes , Quitosana , Ciclídeos/crescimento & desenvolvimento , Nanopartículas/química , Selênio , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Quitosana/farmacologia , Ciclídeos/metabolismo , Selênio/química , Selênio/farmacologia
16.
Nanoscale Horiz ; 6(1): 24-32, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33165477

RESUMO

Open microfluidics have emerged as a low-cost, pumpless alternative strategy to conventional microfluidics for delivery of fluid for a wide variety of applications including rapid biochemical analysis and medical diagnosis. However, creating open microfluidics by tuning the wettability of surfaces typically requires sophisticated cleanroom processes that are unamenable to scalable manufacturing. Herein, we present a simple approach to develop open microfluidic platforms by manipulating the surface wettability of spin-coated graphene ink films on flexible polyethylene terephthalate via laser-controlled patterning. Wedge-shaped hydrophilic tracks surrounded by superhydrophobic walls are created within the graphene films by scribing micron-sized grooves into the graphene with a CO2 laser. This scribing process is used to make superhydrophobic walls (water contact angle ∼160°) that delineate hydrophilic tracks (created through an oxygen plasma pretreatment) on the graphene for fluid transport. These all-graphene open microfluidic tracks are capable of transporting liquid droplets with a velocity of 20 mm s-1 on a level surface and uphill at elevation angles of 7° as well as transporting fluid in bifurcating cross and tree branches. The all-graphene open microfluidic manufacturing technique is rapid and amenable to scalable manufacturing, and consequently offers an alternative pumpless strategy to conventional microfluidics and creates possibilities for diverse applications in fluid transport.

17.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053744

RESUMO

Irrigation water is a primary source of fresh produce contamination by bacteria during the preharvest, particularly in hydroponic systems where the control of pests and pathogens is a major challenge. In this work, we demonstrate the development of a Listeria biosensor using platinum interdigitated microelectrodes (Pt-IME). The sensor is incorporated into a particle/sediment trap for the real-time analysis of irrigation water in a hydroponic lettuce system. We demonstrate the application of this system using a smartphone-based potentiostat for rapid on-site analysis of water quality. A detailed characterization of the electrochemical behavior was conducted in the presence/absence of DNA and Listeria spp., which was followed by calibration in various solutions with and without flow. In flow conditions (100 mL samples), the aptasensor had a sensitivity of 3.37 ± 0.21 k log-CFU-1 mL, and the LOD was 48 ± 12 CFU mL-1 with a linear range of 102 to 104 CFU mL-1. In stagnant solution with no flow, the aptasensor performance was significantly improved in buffer, vegetable broth, and hydroponic media. Sensor hysteresis ranged from 2 to 16% after rinsing in a strong basic solution (direct reuse) and was insignificant after removing the aptamer via washing in Piranha solution (reuse after adsorption with fresh aptamer). This is the first demonstration of an aptasensor used to monitor microbial water quality for hydroponic lettuce in real time using a smartphone-based acquisition system for volumes that conform with the regulatory standards. The aptasensor demonstrated a recovery of 90% and may be reused a limited number of times with minor washing steps.


Assuntos
Lactuca , Listeria , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Hidroponia
18.
ACS Sens ; 5(7): 1900-1911, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32348124

RESUMO

Food-borne illnesses are a growing concern for the food industry and consumers, with millions of cases reported every year. Consequently, there is a critical need to develop rapid, sensitive, and inexpensive techniques for pathogen detection in order to mitigate this problem. However, current pathogen detection strategies mainly include time-consuming laboratory methods and highly trained personnel. Electrochemical in-field biosensors offer a rapid, low-cost alternative to laboratory techniques, but the electrodes used in these biosensors require expensive nanomaterials to increase their sensitivity, such as noble metals (e.g., platinum, gold) or carbon nanomaterials (e.g., carbon nanotubes, or graphene). Herein, we report the fabrication of a highly sensitive and label-free laser-induced graphene (LIG) electrode that is subsequently functionalized with antibodies to electrochemically quantify the food-borne pathogen Salmonella enterica serovar Typhimurium. The LIG electrodes were produced by laser induction on the polyimide film in ambient conditions and, hence, circumvent the need for high-temperature, vacuum environment, and metal seed catalysts commonly associated with graphene-based electrodes fabricated via chemical vapor deposition processes. After functionalization with Salmonella antibodies, the LIG biosensors were able to detect live Salmonella in chicken broth across a wide linear range (25 to 105 CFU mL-1) and with a low detection limit (13 ± 7 CFU mL-1; n = 3, mean ± standard deviation). These results were acquired with an average response time of 22 min without the need for sample preconcentration or redox labeling techniques. Moreover, these LIG immunosensors displayed high selectivity as demonstrated by nonsignificant response to other bacteria strains. These results demonstrate how LIG-based electrodes can be used for electrochemical immunosensing in general and, more specifically, could be used as a viable option for rapid and low-cost pathogen detection in food processing facilities before contaminated foods reach the consumer.


Assuntos
Técnicas Biossensoriais , Grafite , Imunoensaio , Nanotubos de Carbono , Salmonella enterica , Animais , Galinhas , Técnicas Eletroquímicas , Lasers , Limite de Detecção
19.
Food Chem ; 295: 671-679, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174811

RESUMO

The aim of this work was to develop and optimize a pH-responsive nanoparticle based on poly(D,L-lactide-co-glycolide) (PLGA) and chitosan (CHIT) for delivery of natural antimicrobial using trans-cinnamaldehyde (TCIN) as a model compound. The optimization was performed using a central composite design and the desirability function approach. The optimized levels of variables considering all significant responses were 4% (w/w) of TCIN and 6.75% (w/w) of CHIT. After, optimized nanoparticles were produced and characterized according to their physicochemical properties and their antimicrobial activity against Salmonella Typhimurium and Staphylococcus aureus. Optimized nanoparticles characterization indicated a satisfactory TCIN encapsulation (33.20 ±â€¯0.85%), spherical shape, pH-responsive controlled release, with faster release in the presence of CHIT at low pH, and enhanced antimicrobial activity against both pathogens. TCIN encapsulation using PLGA coated with CHIT enhanced its antimicrobial activity and generated a delivery system with pH-sensitivity for controlled release with promising properties for food safety applications.


Assuntos
Anti-Infecciosos/química , Quitosana/sangue , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Acroleína/análogos & derivados , Acroleína/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Varredura Diferencial de Calorimetria , Quitosana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Salmonella/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
20.
Opt Lett ; 43(14): 3317-3320, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004495

RESUMO

Fluorescent nanodiamonds (FNDs) have attracted recent interest for biological applications owing to their biocompatibility and photostability (absence of photoblinking and bleaching). For optical thermometry, nitrogen-vacancy (NV) color centers and silicon-vacancy color centers in diamonds have demonstrated potential, where the NV has the highest sensitivity. However, NV is often excited with green light, which can cause heating and photodamage to tissues, as well as autofluorescence that decreases sensitivity. To overcome these limitations, we report temperature sensing using NV centers excited by deep red light (660 nm), plus another color center that can be excited with NIR light; the nickel (Ni) complex. The NV center measures temperature using diamond lattice expansion while the Ni complex measures temperature using phonon sideband strength.


Assuntos
Técnicas Biossensoriais , Fluorescência , Nanodiamantes/química , Termometria/métodos , Níquel/química , Nitrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...