Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(14): 9924-9935, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35801846

RESUMO

The Amazon rainforest suffers increasing pressure from anthropogenic activities. A key aspect not fully understood is how anthropogenic atmospheric emissions within the basin interact with biogenic emissions and impact the forest's atmosphere and biosphere. We combine a high-resolution atmospheric chemical transport model with an improved emissions inventory and in-situ measurements to investigate a surprisingly high concentration of ozone (O3) and secondary organic aerosol (SOA) 150-200 km downwind of Manaus city in an otherwise pristine forested region. We show that atmospheric dynamics and photochemistry determine a gross production of secondary pollutants seen in the simulation. After sunrise, the erosion of the nocturnal boundary layer mixes natural forest emissions, rich in biogenic volatile organic compounds, with a lofted pollution layer transported overnight, rich in nitrogen oxides and formaldehyde. As a result, O3 and SOA concentrations greater than ∼47 ppbv and 1.8 µg m-3, respectively, were found, with maximum concentrations occurring at 2 pm LT, 150-200 km downwind of Manaus city. These high concentrations affect a large primary forested area of about 11,250 km2. These oxidative areas are under a NOx-limited regime so that changes in NOx emissions from Manaus have a significant impact on O3 and SOA production.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Florestas , Ozônio/análise
2.
Nat Commun ; 10(1): 1046, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837467

RESUMO

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model. Simulations show that emissions of nitrogen-oxides from Manaus, a city of ~2 million people, greatly enhance production of biogenic SOA by 60-200% on average with peak enhancements of 400%, through the increased oxidation of gas-phase organic carbon emitted by the forests. Simulated enhancements agree with aircraft measurements, and are much larger than those reported over other locations. The implication is that increasing anthropogenic emissions in the future might substantially enhance biogenic SOA in pristine locations like the Amazon.

3.
Science ; 359(6374): 411-418, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371462

RESUMO

Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP<50) can be abundant in the troposphere but are conventionally considered too small to affect cloud formation. Observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low-aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP<50 from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses and forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA