Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067440

RESUMO

The diagnosis of iron disturbances usually includes the evaluation of serum parameters. Serum iron is assumed to be entirely bound to transferrin, and transferrin saturation-the ratio between the serum iron concentration and serum transferrin-usually reflects iron availability. Additionally, serum ferritin is commonly used as a surrogate of tissue iron levels. Low serum ferritin values are interpreted as a sign of iron deficiency, and high values are the main indicator of pathological iron overload. However, in situations of inflammation, serum ferritin levels may be very high, independently of tissue iron levels. This presents a particularly puzzling challenge for the clinician evaluating the overall iron status of the patient in the presence of an inflammatory condition. The increase in serum ferritin during inflammation is one of the enigmas regarding iron metabolism. Neither the origin, the mechanism of release, nor the effects of serum ferritin are known. The use of serum ferritin as a biomarker of disease has been rising, and it has become increasingly diverse, but whether or not it contributes to controlling the disease or host pathology, and how it would do it, are important, open questions. These will be discussed here, where we spotlight circulating ferritin and revise the recent clinical and preclinical data regarding its role in health and disease.


Assuntos
Ferritinas , Sobrecarga de Ferro , Humanos , Ferro/metabolismo , Transferrina/metabolismo , Sobrecarga de Ferro/diagnóstico , Inflamação
2.
Front Immunol ; 14: 1168607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153579

RESUMO

Introduction: Osteopenia has been associated to several inflammatory conditions, including mycobacterial infections. How mycobacteria cause bone loss remains elusive, but direct bone infection may not be required. Methods: Genetically engineered mice and morphometric, transcriptomic, and functional analyses were used. Additionally, inflammatory mediators and bone turnover markers were measured in the serum of healthy controls, individuals with latent tuberculosis and patients with active tuberculosis. Results and discussion: We found that infection with Mycobacterium avium impacts bone turnover by decreasing bone formation and increasing bone resorption, in an IFNγ- and TNFα-dependent manner. IFNγ produced during infection enhanced macrophage TNFα secretion, which in turn increased the production of serum amyloid A (SAA) 3. Saa3 expression was upregulated in the bone of both M. avium- and M. tuberculosis-infected mice and SAA1 and 2 proteins (that share a high homology with murine SAA3 protein) were increased in the serum of patients with active tuberculosis. Furthermore, the increased SAA levels seen in active tuberculosis patients correlated with altered serum bone turnover markers. Additionally, human SAA proteins impaired bone matrix deposition and increased osteoclastogenesis in vitro. Overall, we report a novel crosstalk between the cytokine-SAA network operating in macrophages and bone homeostasis. These findings contribute to a better understanding of the mechanisms of bone loss during infection and open the way to pharmacological intervention. Additionally, our data and disclose SAA proteins as potential biomarkers of bone loss during infection by mycobacteria.


Assuntos
Mycobacterium tuberculosis , Proteína Amiloide A Sérica , Humanos , Camundongos , Animais , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Osso e Ossos/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Mycobacterium tuberculosis/metabolismo
3.
Biomolecules ; 13(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979360

RESUMO

Cystic fibrosis is a monogenic disease with a multisystemic phenotype, ranging from predisposition to chronic lung infection and inflammation to reduced bone mass. The exact mechanisms unbalancing the maintenance of an optimal bone mass in cystic fibrosis patients remain unknown. Multiple factors may contribute to severe bone mass reduction that, in turn, have devastating consequences in the patients' quality of life and longevity. Here, we will review the existing evidence linking the CFTR dysfunction and cell-intrinsic bone defects. Additionally, we will also address how the proinflammatory environment due to CFTR dysfunction in immune cells and chronic infection impairs the maintenance of an adequate bone mass in CF patients.


Assuntos
Doenças Ósseas , Fibrose Cística , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Qualidade de Vida , Inflamação
4.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674923

RESUMO

This work reports the synthesis, structural and thermal analysis, and in vitro evaluation of the antimicrobial activity of two new organic salts (OSs) derived from the antimycobacterial drug clofazimine and the fluoroquinolones ofloxacin or norfloxacin. Organic salts derived from active pharmaceutical ingredients (API-OSs), as those herein disclosed, hold promise as cost-effective formulations with improved features over their parent drugs, thus enabling the mitigation of some of their shortcomings. For instance, in the specific case of clofazimine, its poor solubility severely limits its bioavailability. As compared to clofazimine, the clofazimine-derived OSs now reported have improved solubility and thermostability, without any major deleterious effects on the drug's bioactivity profile.


Assuntos
Clofazimina , Fluoroquinolonas , Fluoroquinolonas/farmacologia , Clofazimina/farmacologia , Clofazimina/química , Sais , Antibacterianos/farmacologia , Antibacterianos/química , Solubilidade
5.
Pathogens ; 11(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35335638

RESUMO

The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics. Here, we propose a histology-based method to evaluate infection kinetics grounded in cell microarray (CMA) construction, immunocytochemistry and in situ hybridization techniques. We demonstrate that the chip-like organization of the InfectionCMA has several advantages, allowing side-by-side comparisons between diverse cell lines, infection time points, and biomarker expression and cytolocalization evaluation in the same slide. In addition, this methodology has the potential to be easily adapted for drug screening.

6.
Viruses ; 13(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960751

RESUMO

Large variability in COVID-19 clinical progression urges the need to find the most relevant biomarkers to predict patients' outcomes. We evaluated iron metabolism and immune response in 303 patients admitted to the main hospital of the northern region of Portugal with variable clinical pictures, from September to November 2020. One hundred and twenty-seven tested positive for SARS-CoV-2 and 176 tested negative. Iron-related laboratory parameters and cytokines were determined in blood samples collected soon after admission. Demographic data, comorbidities and clinical outcomes were recorded. Patients were assigned into five groups according to severity. Serum iron and transferrin levels at admission were lower in COVID-19-positive than in COVID-19-negative patients. The levels of interleukin (IL)-6 and monocyte chemoattractant protein 1 (MCP-1) were increased in COVID-19-positive patients. The lowest serum iron and transferrin levels at diagnosis were associated with the worst outcomes. Iron levels negatively correlated with IL-6 and higher levels of this cytokine were associated with a worse prognosis. Serum ferritin levels at diagnosis were higher in COVID-19-positive than in COVID-19-negative patients. Serum iron is the simplest laboratory test to be implemented as a predictor of disease progression in COVID-19-positive patients.


Assuntos
Biomarcadores/sangue , COVID-19 , Ferro/sangue , Índice de Gravidade de Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiocina CCL2/sangue , Estudos de Coortes , Citocinas/sangue , Feminino , Ferritinas , Hepcidinas , Humanos , Inflamação , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Portugal , SARS-CoV-2
7.
Microorganisms ; 9(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946162

RESUMO

The increasing resistance of infectious agents to available drugs urges the continuous and rapid development of new and more efficient treatment options. This process, in turn, requires accurate and high-throughput techniques for antimicrobials' testing. Conventional methods of drug susceptibility testing (DST) are reliable and standardized by competent entities and have been thoroughly applied to a wide range of microorganisms. However, they require much manual work and time, especially in the case of slow-growing organisms, such as mycobacteria. Aiming at a better prediction of the clinical efficacy of new drugs, in vitro infection models have evolved to closely mimic the environment that microorganisms experience inside the host. Automated methods allow in vitro DST on a big scale, and they can integrate models that recreate the interactions that the bacteria establish with host cells in vivo. Nonetheless, they are expensive and require a high level of expertise, which makes them still not applicable to routine laboratory work. In this review, we discuss conventional DST methods and how they should be used as a first screen to select active compounds. We also highlight their limitations and how they can be overcome by more complex and sophisticated in vitro models that reflect the dynamics present in the host during infection. Special attention is given to mycobacteria, which are simultaneously difficult to treat and especially challenging to study in the context of DST.

8.
Microorganisms ; 9(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946207

RESUMO

Despite the enormous progress made in the last few decades, infectious diseases still represent a huge challenge to human society and health systems, as evidenced by the recent SARS-CoV-2 pandemic [...].

9.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918182

RESUMO

Despite being considered a public health emergency for the last 25 years, tuberculosis (TB) is still one of the deadliest infectious diseases, responsible for over a million deaths every year. The length and toxicity of available treatments and the increasing emergence of multidrug-resistant strains of Mycobacterium tuberculosis renders standard regimens increasingly inefficient and emphasizes the urgency to develop new approaches that are not only cost- and time-effective but also less toxic. Antimicrobial peptides (AMP) are small cationic and amphipathic molecules that play a vital role in the host immune system by acting as a first barrier against invading pathogens. The broad spectrum of properties that peptides possess make them one of the best possible alternatives for a new "post-antibiotic" era. In this context, research into AMP as potential anti-tubercular agents has been driven by the increasing danger revolving around the emergence of extremely-resistant strains, the innate resistance that mycobacteria possess and the low compliance of patients towards the toxic anti-TB treatments. In this review, we will focus on AMP from various sources, such as animal, non-animal and synthetic, with reported inhibitory activity towards Mycobacterium tuberculosis.

10.
Microorganisms ; 9(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540596

RESUMO

A few molecularly proven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases of symptomatic reinfection are currently known worldwide, with a resolved first infection followed by a second infection after a 48 to 142-day intervening period. We report a multiple-component study of a clinically severe and prolonged viral shedding coronavirus disease 2019 (COVID-19) case in a 17-year-old Portuguese female. She had two hospitalizations, a total of 19 RT-PCR tests, mostly positive, and criteria for releasing from home isolation at the end of 97 days. The viral genome was sequenced in seven serial samples and in the diagnostic sample from her infected mother. A human genome-wide array (>900 K) was screened on the seven samples, and in vitro culture was conducted on isolates from three late samples. The patient had co-infection by two SARS-CoV-2 lineages, which were affiliated in distinct clades and diverging by six variants. The 20A lineage was absolute at the diagnosis (shared with the patient's mother), but nine days later, the 20B lineage had 3% frequency, and two months later, the 20B lineage had 100% frequency. The 900 K profiles confirmed the identity of the patient in the serial samples, and they allowed us to infer that she had polygenic risk scores for hospitalization and severe respiratory disease within the normal distributions for a Portuguese population cohort. The early-on dynamic co-infection may have contributed to the severity of COVID-19 in this otherwise healthy young patient, and to her prolonged SARS-CoV-2 shedding profile.

11.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008695

RESUMO

During infections, the host redistributes iron in order to starve pathogens from this nutrient. Several proteins are involved in iron absorption, transport, and storage. Ferritin is the most important iron storage protein. It is composed of variable proportions of two peptides, the L- and H-ferritins (FTL and FTH). We previously showed that macrophages increase their expression of FTH1 when they are infected in vitro with Mycobacterium avium, without a significant increase in FTL. In this work, we investigated the role of macrophage FTH1 in M. avium infection in vivo. We found that mice deficient in FTH1 in myeloid cells are more resistant to M. avium infection, presenting lower bacterial loads and lower levels of proinflammatory cytokines than wild-type littermates, due to the lower levels of available iron in the tissues. Importantly, we also found that FTH1 produced by myeloid cells in response to infection may be found in circulation and that it plays a key role in iron redistribution. Specifically, in the absence of FTH1 in myeloid cells, increased expression of ferroportin is observed in liver granulomas and increased iron accumulation occurs in hepatocytes. These results highlight the importance of FTH1 expression in myeloid cells for iron redistribution during infection.


Assuntos
Circulação Sanguínea , Ferritinas/sangue , Ferro/metabolismo , Fígado/metabolismo , Infecções por Mycobacterium/sangue , Células Mieloides/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Ferritinas/deficiência , Regulação da Expressão Gênica , Inflamação/patologia , Deficiências de Ferro/sangue , Deficiências de Ferro/metabolismo , Sobrecarga de Ferro/sangue , Sobrecarga de Ferro/metabolismo , Camundongos , Infecções por Mycobacterium/genética , Mycobacterium avium/crescimento & desenvolvimento , Mycobacterium avium/fisiologia
12.
Semin Cell Dev Biol ; 112: 37-48, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32553581

RESUMO

Hematopoiesis is responsible for the formation of all blood cells from hematopoietic stem cells (HSC) in the bone marrow (BM). It is a highly regulated process, in order to adapt its cellular output to changing body requirements. Specific microenvironmental conditions within the BM must exist in order to maintain HSC pluripotency and self-renewal, as well as to ensure appropriate differentiation of progenitor cells towards each hematopoietic lineage. Those conditions were coined "the hematopoietic niche" and their identity in terms of cell types, location and soluble molecular components has been the subject of intense research in the last decades. Infections are one of the environmental challenges to which hematopoiesis must respond, to feed the immune system with functional cell components and compensate for cellular losses. However, how infections impact the bone marrow hematopoietic niche(s) remains elusive and most of the mechanisms involved are still largely unknown. Here, we review the most recent advances on our knowledge on the hematopoietic niche composition and regulation during homeostasis and also on how the niche responds to infectious stress.


Assuntos
Linhagem da Célula/genética , Homeostase/genética , Infecções/genética , Nicho de Células-Tronco/genética , Medula Óssea/crescimento & desenvolvimento , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Infecções/patologia , Nicho de Células-Tronco/fisiologia
13.
Microorganisms ; 8(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182721

RESUMO

Bone homeostasis, based on a tight balance between bone formation and bone degradation, is affected by infection. On one hand, some invading pathogens are capable of directly colonizing the bone, leading to its destruction. On the other hand, immune mediators produced in response to infection may dysregulate the deposition of mineral matrix by osteoblasts and/or the resorption of bone by osteoclasts. Therefore, bone loss pathologies may develop in response to infection, and their detection and treatment are challenging. Possible biomarkers of impaired bone metabolism during chronic infection need to be identified to improve the diagnosis and management of infection-associated osteopenia. Further understanding of the impact of infections on bone metabolism is imperative for the early detection, prevention, and/or reversion of bone loss. Here, we review the mechanisms responsible for bone loss as a direct and/or indirect consequence of infection.

14.
Microorganisms ; 8(4)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325688

RESUMO

Iron is an essential element for virtually all cell types due to its role in energy metabolism, nucleic acid synthesis and cell proliferation. Nevertheless, if free, iron induces cellular and organ damage through the formation of free radicals. Thus, iron levels must be firmly controlled. During infection, both host and microbe need to access iron and avoid its toxicity. Alterations in serum and cellular iron have been reported as important markers of pathology. In this regard, ferritin, first discovered as an iron storage protein, has emerged as a biomarker not only in iron-related disorders but also in inflammatory diseases, or diseases in which inflammation has a central role such as cancer, neurodegeneration or infection. The basic research on ferritin identification and functions, as well as its role in diseases with an inflammatory component and its potential as a target in host-directed therapies, are the main considerations of this review.

15.
Sci Rep ; 10(1): 3061, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080266

RESUMO

Macrophages are central cells both in the immune response and in iron homeostasis. Iron is both essential and potentially toxic. Therefore, iron acquisition, transport, storage, and release are tightly regulated, by several important proteins. Cytosolic ferritin is an iron storage protein composed of 24 subunits of either the L- or the H-type chains. H-ferritin differs from L-ferritin in the capacity to oxidize Fe2+ to Fe3+. In this work, we investigated the role played by H-ferritin in the macrophages' ability to respond to immune stimuli and to deal with exogenously added iron. We used mice with a conditional deletion of the H-ferritin gene in the myeloid lineage to obtain bone marrow-derived macrophages. These macrophages had normal viability and gene expression under basal culture conditions. However, when treated with interferon-gamma and lipopolysaccharide they had a lower activation of Nitric Oxide Synthase 2. Furthermore, H-ferritin-deficient macrophages had a higher sensitivity to iron-induced toxicity. This sensitivity was associated with a lower intracellular iron accumulation but a higher production of reactive oxygen species. These data indicate that H-ferritin modulates macrophage response to immune stimuli and that it plays an essential role in protection against iron-induced oxidative stress and cell death.


Assuntos
Ferritinas/metabolismo , Ferro/metabolismo , Macrófagos/metabolismo , Oxirredutases/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Compostos Férricos/farmacologia , Ferritinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hemina/farmacologia , Ferro/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/ultraestrutura , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Oxirredutases/genética , Compostos de Amônio Quaternário/farmacologia
16.
Antibiotics (Basel) ; 9(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947883

RESUMO

The genus Mycobacterium comprises not only the deadliest of bacterial pathogens, Mycobacterium tuberculosis, but several other pathogenic species, including M. avium and M. abscessus. The incidence of infections caused by atypical or nontuberculous mycobacteria (NTM) has been steadily increasing, and is associated with a panoply of diseases, including pulmonary, soft-tissue, or disseminated infections. The treatment for NTM disease is particularly challenging, due to its long duration, to variability in bacterial susceptibility profiles, and to the lack of evidence-based guidelines. Treatment usually consists of a combination of at least three drugs taken from months to years, often leading to severe secondary effects and a high chance of relapse. Therefore, new treatment approaches are clearly needed. In this review, we identify the main limitations of current treatments and discuss different alternatives that have been put forward in recent years, with an emphasis on less conventional therapeutics, such as antimicrobial peptides, bacteriophages, iron chelators, or host-directed therapies. We also review new forms of the use of old drugs, including the repurposing of non-antibacterial molecules and the incorporation of antimicrobials into ionic liquids. We aim to stimulate advancements in testing these therapies in relevant models, in order to provide clinicians and patients with useful new tools with which to treat these devastating diseases.

17.
Molecules ; 25(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878190

RESUMO

Cinnamic acids are compounds of natural origin that can be found in many different parts of a wide panoply of plants, where they play the most diverse biological roles, often in a conjugated form. For a long time, this has been driving Medicinal Chemists towards the investigation of the therapeutic potential of natural, semi-synthetic, or fully synthetic cinnamic acid conjugates. These efforts have been steadily disclosing promising drug leads, but a wide chemical space remains that deserves to be further explored. Amongst different reported approaches, the combination or conjugation of cinnamic acids with known drugs has been addressed in an attempt to produce either synergistic or multi-target action. In this connection, the present review will focus on efforts of the past decade regarding conjugation with cinnamic acids as a tool for the rescuing or the repurposing of classical antimalarial drugs, and also on future perspectives in this particular field of research.


Assuntos
Antimaláricos/farmacologia , Cinamatos/farmacologia , Reposicionamento de Medicamentos , Antimaláricos/química , Cinamatos/química , Humanos , Líquidos Iônicos/química
18.
J Immunol ; 203(9): 2485-2496, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562210

RESUMO

Anemia is a frequent and challenging complication of mycobacterial infections. We used a model of disseminated Mycobacterium avium infection in mice to investigate the mechanisms of mycobacteria-induced anemia. We found increased formation of RBC in the bone marrow and spleen of infected mice. Infection induced reticulocytosis and the premature egress of immature progenitors to the systemic circulation in an IFN-γ (IFNG)-dependent way. The newly formed RBC had reduced CD47 surface expression and a reduced life span and were phagocytosed in the liver of infected mice, increasing iron recycling in this organ. The increased engulfment and degradation of RBC was independent of IFNG sensing by macrophages. Together, our findings demonstrate that mycobacterial infection alters the formation of erythrocytes, leading to their accelerated removal from circulation and hemolytic anemia. This comprehensive elucidation of the mechanisms underlying mycobacteria-induced anemia has important implications for its efficient clinical management.


Assuntos
Anemia/etiologia , Eritrócitos/fisiologia , Interferon gama/fisiologia , Infecções por Mycobacterium/complicações , Animais , Células da Medula Óssea/citologia , Antígeno CD47/análise , Diferenciação Celular , Eritropoese , Hepcidinas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Mycobacterium/sangue , Fagocitose
19.
Pharmaceuticals (Basel) ; 11(3)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200471

RESUMO

Iron is an essential nutrient for almost all living organisms, but is not easily made available. Hosts and pathogens engage in a fight for the metal during an infection, leading to major alterations in the host's iron metabolism. Important pathological consequences can emerge from the mentioned interaction, including anemia. Several recent reports have highlighted the alterations in iron metabolism caused by different types of infection, and several possible therapeutic strategies emerge, based on the targeting of the host's iron metabolism. Here, we review the most recent literature on iron metabolism alterations that are induced by infection, the consequent development of anemia, and the potential therapeutic approaches to modulate iron metabolism in order to correct iron-related pathologies and control the ongoing infection.

20.
Langmuir ; 34(5): 2158-2170, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29304549

RESUMO

An understanding of the mechanism of action of antimicrobial peptides is fundamental to the development of new and more active antibiotics. In the present work, we use a wide range of techniques (SANS, SAXD, DSC, ITC, CD, and confocal and electron microscopy) in order to fully characterize the interaction of a cecropin A-melittin hybrid antimicrobial peptide, CA(1-7)M(2-9), of known antimicrobial activity, with a bacterial model membrane of POPE/POPG in an effort to unravel its mechanism of action. We found that CA(1-7)M(2-9) disrupts the vesicles, inducing membrane condensation and forming an onionlike structure of multilamellar stacks, held together by the intercalated peptides. SANS and SAXD revealed changes induced by the peptide in the lipid bilayer thickness and the bilayer stiffening in a tightly packed liquid-crystalline lamellar phase. The analysis of the observed abrupt changes in the repeat distance upon the phase transition to the gel state suggests the formation of an Lγ phase. To the extent of our knowledge, this is the first time that the Lγ phase is identified as part of the mechanism of action of antimicrobial peptides. The energetics of interaction depends on temperature, and ITC results indicate that CA(1-7)M(2-9) interacts with the outer leaflet. This further supports the idea of a surface interaction that leads to membrane condensation and not to pore formation. As a result, we propose that this peptide exerts its antimicrobial action against bacteria through extensive membrane disruption that leads to cell death.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Meliteno/química , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...