Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39252165

RESUMO

BACKGROUND: Toxoplasma gondii is a very common zoonotic parasite in humans and animals worldwide. Human seroprevalence is high in some regions of Canada's North and is thought to be associated with the consumption of traditionally prepared country foods, such as caribou, walrus, ringed seal and beluga. While numerous studies have reported on the prevalence of T. gondii in these animals, in the general absence of felid definitive hosts in the North there has been considerable debate regarding the source of infection, particularly in marine mammals. It has been proposed that fish could be involved in this transmission. AIMS: The objectives of the present study were to perform a targeted survey to determine the prevalence of T. gondii DNA in various tissues of anadromous Arctic charr sampled in Nunavik, Québec, and to investigate the possible role of this commonly consumed fish in the transmission of infection to humans and marine mammals in Canada's North. METHODS AND RESULTS: A total of 126 individual Arctic charr were sampled from several sites in Nunavik, and various tissues were tested for the presence of T. gondii DNA using PCR. Overall, 12 out of 126 (9.5%) Arctic charr tested in the present study were PCR-positive, as confirmed by DNA sequencing. Brain tissue was most commonly found to be positive, followed by heart tissue, while none of the dorsal muscle samples tested were positive. CONCLUSIONS: Although the presence of T. gondii DNA in brain and heart tissues of Arctic charr is very intriguing, infection in these fish, and their possible role in the transmission of this parasite to humans and marine mammals, will need to be confirmed using mouse bioassays. Arctic charr are likely exposed to T. gondii through the ingestion of oocysts transported by surface water and ocean currents from more southerly regions where the definitive felid hosts are more abundant. If infection in Arctic charr can be confirmed, it is possible that these fish could play an important role in the transmission of toxoplasmosis to Inuit, either directly through the consumption of raw fish or indirectly through the infection of fish-eating marine mammals harvested as country foods.

3.
Appl Environ Microbiol ; 88(12): e0058022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638843

RESUMO

The growth of sulfate-reducing bacteria (SRB) and associated hydrogen sulfide production can be problematic in a range of industries such that inhibition strategies are needed. A range of SRB can reduce metal ions, a strategy that has been utilized for bioremediation, metal recovery, and synthesis of precious metal catalysts. In some instances, the metal remains bound to the cell surface, and the impact of this coating on bacterial cell division and metabolism has not previously been reported. In this study, Desulfovibrio desulfuricans cells (1g dry weight) enabled the reduction of up to 1500 mmol (157.5 g) palladium (Pd) ions, resulting in cells being coated in approximately 1 µm of metal. Thickly coated cells were no longer able to metabolize or divide, ultimately leading to the death of the population. Increasing Pd coating led to prolonged inhibition of sulfate reduction, which ceased completely after cells had been coated with 1200 mmol Pd g-1 dry cells. Less Pd nanoparticle coating permitted cells to carry out sulfate reduction and divide, allowing the population to recover over time as surface-associated Pd diminished. Overcoming inhibition in this way was more rapid using lactate as the electron donor, compared to formate. When using formate as an electron donor, preferential Pd(II) reduction took place in the presence of 100 mM sulfate. The inhibition of important metabolic pathways using a biologically enabled casing in metal highlights a new mechanism for the development of microbial control strategies. IMPORTANCE Microbial reduction of sulfate to hydrogen sulfide is highly undesirable in several industrial settings. Some sulfate-reducing bacteria are also able to transform metal ions in their environment into metal phases that remain attached to their outer cell surface. This study demonstrates the remarkable extent to which Desulfovibrio desulfuricans can be coated with locally generated metal nanoparticles, with individual cells carrying more than 100 times their mass of palladium metal. Moreover, it reveals the effect of metal coating on metabolism and replication for a wide range of metal loadings, with bacteria unable to reduce sulfate to sulfide beyond a specific threshold. These findings present a foundation for a novel means of modulating the activity of sulfate-reducing bacteria.


Assuntos
Desulfovibrio desulfuricans , Desulfovibrio , Sulfeto de Hidrogênio , Bactérias/metabolismo , Divisão Celular , Desulfovibrio/metabolismo , Desulfovibrio desulfuricans/metabolismo , Formiatos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Oxirredução , Paládio/metabolismo , Sulfatos/metabolismo , Sulfetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA