Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6610): eabp9262, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048956

RESUMO

Salamanders are tetrapod models to study brain organization and regeneration; however, the identity and evolutionary conservation of brain cell types are largely unknown. We delineated the cell populations in the axolotl telencephalon during homeostasis and regeneration using single-cell genomic profiling. We identified glutamatergic neurons with similarities to amniote neurons of hippocampus, dorsal and lateral cortex, and conserved γ-aminobutyric acid-releasing (GABAergic) neuron classes. We inferred transcriptional dynamics and gene regulatory relationships of postembryonic, region-specific neurogenesis and unraveled conserved differentiation signatures. After brain injury, ependymoglia activate an injury-specific state before reestablishing lost neuron populations and axonal connections. Together, our analyses yield insights into the organization, evolution, and regeneration of a tetrapod nervous system.


Assuntos
Ambystoma mexicanum , Evolução Biológica , Regeneração do Cérebro , Neurogênese , Neurônios , Telencéfalo , Ambystoma mexicanum/fisiologia , Animais , Neurogênese/genética , Neurônios/fisiologia , Análise de Célula Única , Telencéfalo/citologia , Telencéfalo/fisiologia
2.
Sci Immunol ; 6(59)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049865

RESUMO

Germinal centers (GCs) are anatomic structures where B cells undergo affinity maturation, leading to production of high-affinity antibodies. The balance between T follicular helper (TFH) and regulatory (TFR) cells is critical for adequate control of GC responses. The study of human TFH and TFR cell development has been hampered because of the lack of in vitro assays reproducing in vivo biology, along with difficult access to healthy human lymphoid tissues. We used a single-cell transcriptomics approach to study the maturation of TFH and TFR cells isolated from human blood, iliac lymph nodes (LNs), and tonsils. As independent tissues have distinct proportions of follicular T cells in different maturation states, we leveraged the heterogeneity to reconstruct the maturation trajectory for human TFH and TFR cells. We found that the dominant maturation of TFR cells follows a bifurcated trajectory from precursor Treg cells, with one arm of the bifurcation leading to blood TFR cells and the other leading to the most mature GC TFR cells. Overall, our data provide a comprehensive resource for the transcriptomics of different follicular T cell populations and their dynamic relationship across different tissues.


Assuntos
Linfonodos/imunologia , Tonsila Palatina/imunologia , Linfócitos T Auxiliares-Indutores , Linfócitos T Reguladores , Adulto , Diferenciação Celular , Criança , Humanos , RNA-Seq
3.
Dev Cell ; 55(6): 771-783.e5, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33290721

RESUMO

Human gut development requires the orchestrated interaction of differentiating cell types. Here, we generate an in-depth single-cell map of the developing human intestine at 6-10 weeks post-conception. Our analysis reveals the transcriptional profile of cycling epithelial precursor cells; distinct from LGR5-expressing cells. We propose that these cells may contribute to differentiated cell subsets via the generation of LGR5-expressing stem cells and receive signals from surrounding mesenchymal cells. Furthermore, we draw parallels between the transcriptomes of ex vivo tissues and in vitro fetal organoids, revealing the maturation of organoid cultures in a dish. Lastly, we compare scRNA-seq profiles from pediatric Crohn's disease epithelium alongside matched healthy controls to reveal disease-associated changes in the epithelial composition. Contrasting these with the fetal profiles reveals the re-activation of fetal transcription factors in Crohn's disease. Our study provides a resource available at www.gutcellatlas.org, and underscores the importance of unraveling fetal development in understanding disease.


Assuntos
Doença de Crohn/genética , Mucosa Intestinal/metabolismo , Transcriptoma , Adolescente , Células Cultivadas , Criança , Doença de Crohn/metabolismo , Humanos , Mucosa Intestinal/embriologia , RNA-Seq , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nature ; 583(7815): 206-207, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32623443
5.
Nat Immunol ; 21(3): 343-353, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066951

RESUMO

Gastrointestinal microbiota and immune cells interact closely and display regional specificity; however, little is known about how these communities differ with location. Here, we simultaneously assess microbiota and single immune cells across the healthy, adult human colon, with paired characterization of immune cells in the mesenteric lymph nodes, to delineate colonic immune niches at steady state. We describe distinct helper T cell activation and migration profiles along the colon and characterize the transcriptional adaptation trajectory of regulatory T cells between lymphoid tissue and colon. Finally, we show increasing B cell accumulation, clonal expansion and mutational frequency from the cecum to the sigmoid colon and link this to the increasing number of reactive bacterial species.


Assuntos
Colo/imunologia , Colo/microbiologia , Microbioma Gastrointestinal/imunologia , Adulto , Linfócitos B/imunologia , Colo/citologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Linfonodos/citologia , Linfonodos/imunologia , Ativação Linfocitária , Especificidade de Órgãos , RNA-Seq , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Transcriptoma
6.
Eur J Immunol ; 50(7): 972-985, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32012260

RESUMO

Several drugs targeting members of the TNF superfamily or TNF receptor superfamily (TNFRSF) are widely used in medicine or are currently being tested in therapeutic trials. However, their mechanism of action remains poorly understood. Here, we explored the effects of TNFRSF co-stimulation on murine Foxp3+ regulatory T cell (Treg) biology, as they are pivotal modulators of immune responses. We show that engagement of TNFR2, 4-1BB, GITR, and DR3, but not OX40, increases Treg proliferation and survival. Triggering these TNFRSF in Tregs induces similar changes in gene expression patterns, suggesting that they engage common signal transduction pathways. Among them, we identified a major role of canonical NF-κB. Importantly, TNFRSF co-stimulation improves the ability of Tregs to suppress colitis. Our data demonstrate that stimulation of discrete TNFRSF members enhances Treg activation and function through a shared mechanism. Consequently, therapeutic effects of drugs targeting TNFRSF or their ligands may be mediated by their effect on Tregs.


Assuntos
Ativação Linfocitária , NF-kappa B/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Camundongos , Camundongos Knockout , NF-kappa B/genética , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais/genética , Linfócitos T Reguladores/citologia
7.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845972

RESUMO

Plasmacytoid dendritic cells (pDCs) produce type I interferon (IFN-I) and are traditionally defined as being BDCA-2+CD123+. pDCs are not readily detectable in healthy human skin, but have been suggested to accumulate in wounds. Here, we describe a CD1a-bearing BDCA-2+CD123int DC subset that rapidly infiltrates human skin wounds and comprises a major DC population. Using single-cell RNA sequencing, we show that these cells are largely activated DCs acquiring features compatible with lymph node homing and antigen presentation, but unexpectedly express both BDCA-2 and CD123, potentially mimicking pDCs. Furthermore, a third BDCA-2-expressing population, Axl+Siglec-6+ DCs (ASDC), was also found to infiltrate human skin during wounding. These data demonstrate early skin infiltration of a previously unrecognized CD123intBDCA-2+CD1a+ DC subset during acute sterile inflammation, and prompt a re-evaluation of previously ascribed pDC involvement in skin disease.


Assuntos
Células Dendríticas/metabolismo , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Pele/metabolismo , Apresentação de Antígeno/fisiologia , Antígenos CD1/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Linfonodos/metabolismo
8.
Trends Immunol ; 40(11): 1011-1021, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31645299

RESUMO

The immune system encompasses a large degree of phenotypic diversity and plasticity in its cell types, and more is to be uncovered. We argue that large, multiomic datasets of single-cell resolution, in conjunction with improved computational methods, will be essential to resolving immune cell identity. Existing datasets, combined with 'big data' methodologies, can serve as a platform to support future studies in immunology. Technical and analytical advances in multiomics and spatial integration can provide a reference for gene regulation and cellular interactions in spatially structured tissue contexts. We posit that these developments may allow guided functional studies of immune cell populations and lay the groundwork for informed cell engineering and precision medicine.


Assuntos
Biologia Computacional/instrumentação , Sistema Imunitário/fisiologia , Análise de Célula Única/métodos , Engenharia Tecidual/tendências , Animais , Comunicação Celular , Bases de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Medicina de Precisão , Receptor Cross-Talk , Transdução de Sinais
9.
Nat Med ; 25(7): 1153-1163, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209336

RESUMO

Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs. We report location-dependent airway epithelial cell states and a novel subset of tissue-resident memory T cells. In the lower airways of patients with asthma, mucous cell hyperplasia is shown to stem from a novel mucous ciliated cell state, as well as goblet cell hyperplasia. We report the presence of pathogenic effector type 2 helper T cells (TH2) in asthmatic lungs and find evidence for type 2 cytokines in maintaining the altered epithelial cell states. Unbiased analysis of cell-cell interactions identifies a shift from airway structural cell communication in healthy lungs to a TH2-dominated interactome in asthmatic lungs.


Assuntos
Asma/patologia , Pulmão/citologia , Adulto , Idoso , Linfócitos T CD4-Positivos/fisiologia , Comunicação Celular , Células Epiteliais/imunologia , Células Epiteliais/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Células Caliciformes/metabolismo , Humanos , Pulmão/imunologia , Pulmão/patologia , Masculino , Metaplasia , Pessoa de Meia-Idade , Células Th2/fisiologia , Transcriptoma
10.
Genome Biol ; 20(1): 63, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902100

RESUMO

Droplet-based single-cell RNA sequencing protocols have dramatically increased the throughput of single-cell transcriptomics studies. A key computational challenge when processing these data is to distinguish libraries for real cells from empty droplets. Here, we describe a new statistical method for calling cells from droplet-based data, based on detecting significant deviations from the expression profile of the ambient solution. Using simulations, we demonstrate that EmptyDrops has greater power than existing approaches while controlling the false discovery rate among detected cells. Our method also retains distinct cell types that would have been discarded by existing methods in several real data sets.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas Analíticas Microfluídicas/métodos , Monócitos/metabolismo , Neurônios/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Biomarcadores/metabolismo , Humanos , Monócitos/citologia , Neurônios/citologia
11.
Immunity ; 50(2): 493-504.e7, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30737144

RESUMO

Non-lymphoid tissues (NLTs) harbor a pool of adaptive immune cells with largely unexplored phenotype and development. We used single-cell RNA-seq to characterize 35,000 CD4+ regulatory (Treg) and memory (Tmem) T cells in mouse skin and colon, their respective draining lymph nodes (LNs) and spleen. In these tissues, we identified Treg cell subpopulations with distinct degrees of NLT phenotype. Subpopulation pseudotime ordering and gene kinetics were consistent in recruitment to skin and colon, yet the initial NLT-priming in LNs and the final stages of NLT functional adaptation reflected tissue-specific differences. Predicted kinetics were recapitulated using an in vivo melanoma-induction model, validating key regulators and receptors. Finally, we profiled human blood and NLT Treg and Tmem cells, and identified cross-mammalian conserved tissue signatures. In summary, we describe the relationship between Treg cell heterogeneity and recruitment to NLTs through the combined use of computational prediction and in vivo validation.


Assuntos
Adaptação Fisiológica/imunologia , Análise de Célula Única/métodos , Linfócitos T Reguladores/imunologia , Transcriptoma/imunologia , Adaptação Fisiológica/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/imunologia , Colo/imunologia , Colo/metabolismo , Humanos , Memória Imunológica/genética , Memória Imunológica/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Pele/imunologia , Pele/metabolismo , Baço/imunologia , Baço/metabolismo , Linfócitos T Reguladores/metabolismo
12.
Cell ; 176(4): 882-896.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639098

RESUMO

T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and Bhlhe40, as part of the core regulatory network governing Th2 helper cell fates.


Assuntos
Receptor Cross-Talk/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Cromatina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Transcrição/metabolismo
13.
J Mol Model ; 25(1): 5, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560295

RESUMO

Production and characterization of polymeric nanoparticles, as colloidal dispersions, are processes that require time and technical skills to make the results accurate. Computational simulations in nanoscience have been used to help in these processes and provide agility and support to reach results: stability and quality in dispersions. Multi-Agent System for Polymeric Nanoparticles (MASPN) is an innovative and original simulation environment with features to demonstrate interactions of particles from physical-chemical parameters, ensuring Brownian motion of particles and attractive and repulsive behaviour. The MASPN environment has been designed and has been built according to the feature-driven development (FDD), as software methodology, and a multi-agent systems approach. In addition, we have used the event-driven simulation package algs4, the JASON agent building environment, all integrated by Java language. This paper aims to present the relation of the algs4 package and the JASON tool, both integrated into the MASPN environment to generate Brownian motion with elastic and inelastic collisions. The MASPN environment as a simulation tool emerges as a result, including the following features: graphical interface; integrated physical-chemical parameters; Brownian motion; JASON and algs4 integration; and distribution charts (size, zeta potential, and pH).

14.
Nature ; 563(7730): 197-202, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30356220

RESUMO

As the first line of defence against pathogens, cells mount an innate immune response, which varies widely from cell to cell. The response must be potent but carefully controlled to avoid self-damage. How these constraints have shaped the evolution of innate immunity remains poorly understood. Here we characterize the innate immune response's transcriptional divergence between species and variability in expression among cells. Using bulk and single-cell transcriptomics in fibroblasts and mononuclear phagocytes from different species, challenged with immune stimuli, we map the architecture of the innate immune response. Transcriptionally diverging genes, including those that encode cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, genes that are involved in the regulation of this response, such as those that encode transcription factors and kinases, are conserved between species and display low cell-to-cell variability in expression. We suggest that this expression pattern, which is observed across species and conditions, has evolved as a mechanism for fine-tuned regulation to achieve an effective but balanced response.


Assuntos
Células/metabolismo , Evolução Molecular , Imunidade Inata/genética , Imunidade Inata/imunologia , Especificidade de Órgãos/genética , Especificidade da Espécie , Transcrição Gênica/genética , Animais , Células/citologia , Citocinas/genética , Humanos , Regiões Promotoras Genéticas/genética
15.
Mol Cell ; 72(2): 369-379.e4, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340024

RESUMO

The highly intronic nature of protein coding genes in mammals necessitates a co-transcriptional splicing mechanism as revealed by mNET-seq analysis. Immunoprecipitation of MNase-digested chromatin with antibodies against RNA polymerase II (Pol II) shows that active spliceosomes (both snRNA and proteins) are complexed to Pol II S5P CTD during elongation and co-transcriptional splicing. Notably, elongating Pol II-spliceosome complexes form strong interactions with nascent transcripts, resulting in footprints of approximately 60 nucleotides. Also, splicing intermediates formed by cleavage at the 5' splice site are associated with nearly all spliced exons. These spliceosome-bound intermediates are frequently ligated to upstream exons, implying a sequential, constitutive, and U12-dependent splicing process. Finally, lack of detectable spliced products connected to the Pol II active site in human HeLa or murine lymphoid cells suggests that splicing does not occur immediately following 3' splice site synthesis. Our results imply that most mammalian splicing requires exon definition for completion.


Assuntos
Fosforilação/genética , RNA Polimerase II/genética , Splicing de RNA/genética , Serina/genética , Spliceossomos/genética , Transcrição Gênica/genética , Animais , Linhagem Celular Tumoral , Éxons/genética , Células HeLa , Humanos , Íntrons/genética , Camundongos , RNA Nuclear Pequeno/genética
16.
Genome Med ; 10(1): 76, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355343

RESUMO

BACKGROUND: The IRE1a-XBP1 pathway is a conserved adaptive mediator of the unfolded protein response. The pathway is indispensable for the development of secretory cells by facilitating protein folding and enhancing secretory capacity. In the immune system, it is known to function in dendritic cells, plasma cells, and eosinophil development and differentiation, while its role in T helper cell is unexplored. Here, we investigated the role of the IRE1a-XBP1 pathway in regulating activation and differentiation of type-2 T helper cell (Th2), a major T helper cell type involved in allergy, asthma, helminth infection, pregnancy, and tumor immunosuppression. METHODS: We perturbed the IRE1a-XBP1 pathway and interrogated its role in Th2 cell differentiation. We performed genome-wide transcriptomic analysis of differential gene expression to reveal IRE1a-XBP1 pathway-regulated genes and predict their biological role. To identify direct target genes of XBP1 and define XBP1's regulatory network, we performed XBP1 ChIPmentation (ChIP-seq). We validated our predictions by flow cytometry, ELISA, and qPCR. We also used a fluorescent ubiquitin cell cycle indicator mouse to demonstrate the role of XBP1 in the cell cycle. RESULTS: We show that Th2 lymphocytes induce the IRE1a-XBP1 pathway during in vitro and in vivo activation. Genome-wide transcriptomic analysis of differential gene expression by perturbing the IRE1a-XBP1 pathway reveals XBP1-controlled genes and biological pathways. Performing XBP1 ChIPmentation (ChIP-seq) and integrating with transcriptomic data, we identify XBP1-controlled direct target genes and its transcriptional regulatory network. We observed that the IRE1a-XBP1 pathway controls cytokine secretion and the expression of two Th2 signature cytokines, IL13 and IL5. We also discovered that the IRE1a-XBP1 pathway facilitates activation-dependent Th2 cell proliferation by facilitating cell cycle progression through S and G2/M phase. CONCLUSIONS: We confirm and detail the critical role of the IRE1a-XBP1 pathway during Th2 lymphocyte activation in regulating cytokine expression, secretion, and cell proliferation. Our high-quality genome-wide XBP1 ChIP and gene expression data provide a rich resource for investigating XBP1-regulated genes. We provide a browsable online database available at http://data.teichlab.org .


Assuntos
Diferenciação Celular , Endorribonucleases/metabolismo , Estudo de Associação Genômica Ampla , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Estresse Fisiológico , Células Th2/citologia , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Sequência de Bases , Ciclo Celular , Proliferação de Células , Citocinas/metabolismo , Endorribonucleases/genética , Feminino , Regulação da Expressão Gênica , Ativação Linfocitária/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Regulação para Cima/genética , Proteína 1 de Ligação a X-Box/genética
17.
Front Immunol ; 9: 1435, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997618

RESUMO

The single-cell revolution is paving the way towards the molecular characterisation of every cell type in the human body, revealing relationships between cell types and states at high resolution. Changes in cellular phenotypes are particularly prevalent in the immune system and can be observed in its continuous remodelling up to adulthood, response to disease and development of immunological memory. In this review, we delve into the world of cellular dynamics of the immune system. We discuss current single-cell experimental and computational approaches in this area, giving insights into plasticity and commitment of cell fates. Finally, we provide an outlook on upcoming technological developments and predict how these will improve our understanding of the immune system.

18.
Sci Rep ; 8(1): 685, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330484

RESUMO

The crucial capability of T cells for discrimination between self and non-self peptides is based on negative selection of developing thymocytes by medullary thymic epithelial cells (mTECs). The mTECs purge autoreactive T cells by expression of cell-type specific genes referred to as tissue-restricted antigens (TRAs). Although the autoimmune regulator (AIRE) protein is known to promote the expression of a subset of TRAs, its mechanism of action is still not fully understood. The expression of TRAs that are not under the control of AIRE also needs further characterization. Furthermore, expression patterns of TRA genes have been suggested to change over the course of mTEC development. Herein we have used single-cell RNA-sequencing to resolve patterns of TRA expression during mTEC development. Our data indicated that mTEC development consists of three distinct stages, correlating with previously described jTEC, mTEChi and mTEClo phenotypes. For each subpopulation, we have identified marker genes useful in future studies. Aire-induced TRAs were switched on during jTEC-mTEC transition and were expressed in genomic clusters, while otherwise the subsets expressed largely overlapping sets of TRAs. Moreover, population-level analysis of TRA expression frequencies suggested that such differences might not be necessary to achieve efficient thymocyte selection.


Assuntos
Autoantígenos/genética , Células Epiteliais/metabolismo , RNA/metabolismo , Animais , Autoantígenos/metabolismo , Diferenciação Celular , Células Epiteliais/citologia , Feminino , Fase G1 , Redes Reguladoras de Genes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , RNA/química , RNA/isolamento & purificação , Análise de Sequência de RNA , Análise de Célula Única , Timo/citologia , Fatores de Transcrição/metabolismo , Transcriptoma , Proteína AIRE
19.
Mol Cell ; 65(1): 25-38, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017589

RESUMO

Numerous long intervening noncoding RNAs (lincRNAs) are generated from the mammalian genome by RNA polymerase II (Pol II) transcription. Although multiple functions have been ascribed to lincRNAs, their synthesis and turnover remain poorly characterized. Here, we define systematic differences in transcription and RNA processing between protein-coding and lincRNA genes in human HeLa cells. This is based on a range of nascent transcriptomic approaches applied to different nuclear fractions, including mammalian native elongating transcript sequencing (mNET-seq). Notably, mNET-seq patterns specific for different Pol II CTD phosphorylation states reveal weak co-transcriptional splicing and poly(A) signal-independent Pol II termination of lincRNAs as compared to pre-mRNAs. In addition, lincRNAs are mostly restricted to chromatin, since they are rapidly degraded by the RNA exosome. We also show that a lincRNA-specific co-transcriptional RNA cleavage mechanism acts to induce premature termination. In effect, functional lincRNAs must escape from this targeted nuclear surveillance process.


Assuntos
Núcleo Celular/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Biologia Computacional , Bases de Dados Genéticas , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Células HeLa , Humanos , Fosforilação , Poliadenilação , Interferência de RNA , RNA Polimerase II/metabolismo , Precursores de RNA/genética , Splicing de RNA , Estabilidade de RNA , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transfecção
20.
Nat Protoc ; 11(3): 413-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26844429

RESUMO

The transcription cycle of RNA polymerase II (Pol II) correlates with changes to the phosphorylation state of its large subunit C-terminal domain (CTD). We recently developed Native Elongation Transcript sequencing using mammalian cells (mNET-seq), which generates single-nucleotide-resolution genome-wide profiles of nascent RNA and co-transcriptional RNA processing that are associated with different CTD phosphorylation states. Here we provide a detailed protocol for mNET-seq. First, Pol II elongation complexes are isolated with specific phospho-CTD antibodies from chromatin solubilized by micrococcal nuclease digestion. Next, RNA derived from within the Pol II complex is size fractionated and Illumina sequenced. Using mNET-seq, we have previously shown that Pol II pauses at both ends of protein-coding genes but with different CTD phosphorylation patterns, and we have also detected phosphorylation at serine 5 (Ser5-P) CTD-specific splicing intermediates and Pol II accumulation over co-transcriptionally spliced exons. With moderate biochemical and bioinformatic skills, mNET-seq can be completed in ∼6 d, not including sequencing and data analysis.


Assuntos
RNA/genética , Análise de Sequência de RNA/métodos , Transcrição Gênica , Animais , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Genoma , Humanos , Fosforilação , RNA/metabolismo , RNA Polimerase II/metabolismo , Splicing de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...