Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biopolymers ; 104(6): 775-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26270398

RESUMO

We have created models to predict cleavage sites for several human proteases including caspase-1, caspase-3, caspase-6, caspase-7, cathepsin B, cathepsin D, cathepsin G, cathepsin K, cathepsin L, elastase-2, granzyme A, granzyme B, matrix metallopeptidase-2 (MMP2), MMP7, MMP9, thrombin, and trypsin-1. Rather than representing the sequence pattern around the potential cleavage site through a series of flags with each flag representing one of the 20 standard amino acids, we first represent each amino acid by its calculated properties. For these calculated properties, we use validated cheminformatic descriptors, such as molecular weight, logP, and polar surface area, of the individual amino acids. Finally, the cleavage site-specific descriptors are calculated through various combinations of the individual amino acid descriptors for the residues surrounding the cleavage site. Some of these combinations do not take into account the location of the residue, as long as it is in a prescribed neighborhood of the potential cleavage site, whereas others are sensitive to the precise order of the residues in the sequence. The key advantage of this approach is that it allows one to perform meaningful calculations with nonstandard amino acids for which little or no data exists. Finally, using both docking and molecular dynamics simulations, we examine the potential for and limitations of protease crystal structures to impact the design of proteolytically stable peptides.


Assuntos
Biologia Computacional , Descoberta de Drogas , Peptídeos/administração & dosagem , Domínio Catalítico , Humanos , Simulação de Acoplamento Molecular , Peptídeos/química , Proteólise
2.
J Phys Chem B ; 118(36): 10607-17, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25127419

RESUMO

GM2AP has a ß-cup topology with numerous X-ray structures showing multiple conformations for some of the surface loops, revealing conformational flexibility that may be related to function, where function is defined as either membrane binding associated with ligand binding and extraction or interaction with other proteins. Here, site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and molecular dynamic (MD) simulations are used to characterize the mobility and conformational flexibility of various structural regions of GM2AP. A series of 10 single cysteine amino acid substitutions were generated, and the constructs were chemically modified with the methanethiosulfonate spin label. Continuous wave (CW) EPR line shapes were obtained and subsequently simulated using the microscopic order macroscopic disorder (MOMD) program. Line shapes for sites that have multiple conformations in the X-ray structures required two spectral components, whereas spectra of the remaining sites were adequately fit with single-component parameters. For spin labeled sites L126C and I66C, spectra were acquired as a function of temperature, and simulations provided for the determination of thermodynamic parameters associated with conformational change. Binding to GM2 ligand did not alter the conformational flexibility of the loops, as evaluated by EPR and NMR spectroscopies. These results confirm that the conformational flexibility observed in the surface loops of GM2AP crystals is present in solution and that the exchange is slow on the EPR time scale (>ns). Furthermore, MD simulation results are presented and agree well with the conformational heterogeneity revealed by SDSL.


Assuntos
Proteína Ativadora de G(M2)/química , Cisteína/química , Elasticidade , Espectroscopia de Ressonância de Spin Eletrônica , Proteína Ativadora de G(M2)/genética , Concentração de Íons de Hidrogênio , Modelos Lineares , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Soluções , Marcadores de Spin , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...