Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(32): E6526-E6535, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739894

RESUMO

Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOBV family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOBV relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterized histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. We discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOBV histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.


Assuntos
Proteínas de Bactérias/química , Quebras de DNA de Cadeia Simples , DNA Bacteriano/química , Endodesoxirribonucleases/química , Modelos Moleculares , Plasmídeos/química , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Staphylococcus aureus/genética
2.
ACS Cent Sci ; 3(5): 454-461, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28573208

RESUMO

We report on the fate of nucleic acids conformation in the gas phase as sampled using native mass spectrometry coupled to ion mobility spectrometry. On the basis of several successful reports for proteins and their complexes, the technique has become popular in structural biology, and the conformation survival becomes more and more taken for granted. Surprisingly, we found that DNA and RNA duplexes, at the electrospray charge states naturally obtained from native solution conditions (≥100 mM aqueous NH4OAc), are significantly more compact in the gas phase compared to the canonical solution structures. The compaction is observed for all duplex sizes (gas-phase structures are more compact than canonical B-helices by ∼20% for 12-bp, and by up to ∼30% for 36-bp duplexes), and for DNA and RNA alike. Molecular modeling (density functional calculations on small helices, semiempirical calculations on up to 12-bp, and molecular dynamics on up to 36-bp duplexes) demonstrates that the compaction is due to phosphate group self-solvation prevailing over Coulomb repulsion. Molecular dynamics simulations starting from solution structures do not reproduce the experimental compaction. To be experimentally relevant, molecular dynamics sampling should reflect the progressive structural rearrangements occurring during desolvation. For nucleic acid duplexes, the compaction observed for low charge states results from novel phosphate-phosphate hydrogen bonds formed across both grooves at the very late stages of electrospray.

3.
J Am Chem Soc ; 138(50): 16355-16363, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27957842

RESUMO

While DNA is mostly a primary carrier of genetic information and displays a regular duplex structure, RNA can form very complicated and conserved 3D structures displaying a large variety of functions, such as being an intermediary carrier of the genetic information, translating such information into the protein machinery of the cell, or even acting as a chemical catalyst. At the base of such functional diversity is the subtle balance between different backbone, nucleobase, and ribose conformations, finely regulated by the combination of hydrogen bonds and stacking interactions. Although an apparently simple chemical modification, the presence of the 2'OH in RNA has a profound effect in the ribonucleotide conformational balance, adding an extra layer of complexity to the interactions network in RNA. In the present work, we have combined database analysis with extensive molecular dynamics, quantum mechanics, and hybrid QM/MM simulations to provide direct evidence on the dramatic impact of the 2'OH conformation on sugar puckering. Calculations provide evidence that proteins can modulate the 2'OH conformation to drive sugar repuckering, leading then to the formation of bioactive conformations. In summary, the 2'OH group seems to be a primary molecular switch contributing to specific protein-RNA recognition.


Assuntos
Hidróxidos/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA/química , Teoria Quântica , Rotação
4.
Curr Opin Struct Biol ; 37: 29-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26708341

RESUMO

DNA is not only among the most important molecules in life, but a meeting point for biology, physics and chemistry, being studied by numerous techniques. Theoretical methods can help in gaining a detailed understanding of DNA structure and function, but their practical use is hampered by the multiscale nature of this molecule. In this regard, the study of DNA covers a broad range of different topics, from sub-Angstrom details of the electronic distributions of nucleobases, to the mechanical properties of millimeter-long chromatin fibers. Some of the biological processes involving DNA occur in femtoseconds, while others require years. In this review, we describe the most recent theoretical methods that have been considered to study DNA, from the electron to the chromosome, enriching our knowledge on this fascinating molecule.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Teoria Quântica
5.
Adv Protein Chem Struct Biol ; 100: 225-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26415846

RESUMO

Glycosyltransferases (GTs) catalyze the biosynthesis of glycosidic linkages by transferring a monosaccharide from a nucleotide sugar donor to an acceptor substrate, and they do that with exquisite regio- and stereospecificity. Retaining GTs act with retention of the configuration at the anomeric carbon of the transferred sugar. Their chemical mechanism has been under debate for long as conclusive experimental data to confirm the mechanism have been elusive. In the past years, quantum mechanical/molecular mechanical (QM/MM) calculations have shed light on the mechanistic discussion. Here, we review the work carried out in our group investigating three of these retaining enzymes (LgtC, α3GalT, and GalNAc-T2). Our results support the controversial front-side attack mechanism as the general mechanism for most retaining GTs. The latest structural data are in agreement with these findings. QM/MM calculations have revealed how enzyme-substrate and substrate-substrate interactions modulate the transfer reaction catalyzed by these enzymes. Moreover, they provide an explanation on why in some cases a strong nucleophilic residue is found on the ß-face of the sugar, opening the door to a shift toward a double-displacement mechanism.


Assuntos
Proteínas de Bactérias/química , Galactosiltransferases/química , Glicosiltransferases/química , Monossacarídeos/química , N-Acetilgalactosaminiltransferases/química , Bactérias/química , Bactérias/enzimologia , Biocatálise , Humanos , Hidroxilação , Cinética , Simulação de Dinâmica Molecular , Teoria Quântica , Estereoisomerismo , Especificidade por Substrato , Termodinâmica , Polipeptídeo N-Acetilgalactosaminiltransferase
6.
Angew Chem Int Ed Engl ; 54(34): 9898-902, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26136334

RESUMO

Glycosyltransferases (GTs) comprise a prominent family of enzymes that play critical roles in a variety of cellular processes, including cell signaling, cell development, and host-pathogen interactions. Glycosyl transfer can proceed with either inversion or retention of the anomeric configuration with respect to the reaction substrates and products. The elucidation of the catalytic mechanism of retaining GTs remains a major challenge. A native ternary complex of a GT in a productive mode for catalysis is reported, that of the retaining glucosyl-3-phosphoglycerate synthase GpgS from M. tuberculosis in the presence of the sugar donor UDP-Glc, the acceptor substrate phosphoglycerate, and the divalent cation cofactor. Through a combination of structural, chemical, enzymatic, molecular dynamics, and quantum-mechanics/molecular-mechanics (QM/MM) calculations, the catalytic mechanism was unraveled, thereby providing a strong experimental support for a front-side substrate-assisted SN i-type reaction.


Assuntos
Biocatálise , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Teoria Quântica
7.
Nat Struct Mol Biol ; 22(1): 65-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25486305

RESUMO

The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal-ion cleavage mechanism. We captured intermediates of the different catalytic steps, and this allowed us to watch the reaction by 'freezing' multiple states. We observed the successive entry of two metals involved in the reaction and the arrival of a third cation in a central position of the active site. This third metal ion has a crucial role, triggering the consecutive hydrolysis of the targeted phosphodiester bonds in the DNA strands and leaving its position once the DSB is generated. The multiple structures show the orchestrated conformational changes in the protein residues, nucleotides and metals during catalysis.


Assuntos
DNA/metabolismo , Desulfurococcaceae/enzimologia , Endonucleases/metabolismo , Ésteres/metabolismo , Fosfatos/metabolismo , Hidrólise , Modelos Moleculares , Conformação Proteica
8.
Org Biomol Chem ; 12(17): 2645-55, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24643241

RESUMO

It is estimated that >50% of proteins are glycosylated with sugar tags that can modulate protein activity through what has been called the sugar code. Here we present the first QM/MM calculations of human GalNAc-T2, a retaining glycosyltransferase, which initiates the biosynthesis of mucin-type O-glycans. Importantly, we have characterized a hydrogen bond between the ß-phosphate of UDP and the backbone amide group from the Thr7 of the sugar acceptor (EA2 peptide) that promotes catalysis and that we propose could be a general catalytic strategy used in peptide O-glycosylation by retaining glycosyltransferases. Additional important substrate-substrate interactions have been identified, for example, between the ß-phosphate of UDP with the attacking hydroxyl group from the acceptor substrate and with the substituent at the C2' position of the transferred sugar. Our results support a front-side attack mechanism for this enzyme, with a barrier height of ~20 kcal mol(-1) at the QM(M05-2X/TZVP//BP86/SVP)/CHARMM22 level, in reasonable agreement with the experimental kinetic data. Experimental and in silico mutations show that transferase activity is very sensitive to changes in residues Glu334, Asn335 and Arg362. Additionally, our calculations for different donor substrates suggest that human GalNAc-T2 would be inactive if 2'-deoxy-Gal or 2'-oxymethyl-Gal were used, while UDP-Gal is confirmed as a valid sugar donor. Finally, the analysis herein presented highlights that both the substrate-substrate and the enzyme-substrate interactions are mainly concentrated on stabilizing the negative charge developing at the UDP leaving group as the transition state is approached, identifying this as a key aspect of retaining glycosyltransferases catalysis.


Assuntos
Biologia Computacional , N-Acetilgalactosaminiltransferases/metabolismo , Difosfato de Uridina/metabolismo , Catálise , Glicosilação , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mucinas/metabolismo , N-Acetilgalactosaminiltransferases/química , Polissacarídeos/metabolismo , Conformação Proteica , Teoria Quântica , Especificidade por Substrato , Difosfato de Uridina/química , Polipeptídeo N-Acetilgalactosaminiltransferase
9.
J Biosci ; 38(3): 461-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23938379

RESUMO

Dipeptidyl peptidase IV (DPP-IV) is an ectopeptidase with many roles, and a target of therapies for different pathologies. Zinc and calcium produce mixed inhibition of porcine DPP-IV activity. To investigate whether these results may be generalized to mammalian DPP-IV orthologues, we purified the intact membrane-bound form from rat kidney. Rat DPP-IV hydrolysed Gly-Pro-p-nitroanilide with an average Vmax of 0.86 +/- 0.01 meu mol min-1mL-1 and KM of 76 +/- 6 meu M. The enzyme was inhibited by the DPP-IV family inhibitor L-threo-Ile-thiazolidide (Ki=64.0 +/- 0.53 nM), competitively inhibited by bacitracin (Ki=0.16 +/- 0.01 mM) and bestatin (Ki=0.23 +/- 0.02 mM), and irreversibly inhibited by TLCK (IC50 value of 1.20 +/- 0.11 mM). The enzyme was also inhibited by divalent ions like Zn2+ and Ca2+, for which a mixed inhibition mechanism was observed (Ki values of the competitive component: 0.15 +/- 0.01 mM and 50.0 +/- 1.05 mM, respectively). According to bioinformatic tools, Ca2+ ions preferentially bound to the beta-propeller domain of the rat and human enzymes, while Zn2+ ions to the alpha-beta hydrolase domain; the binding sites were essentially the same that were previously reported for the porcine DPP-IV. These data suggest that the cationic susceptibility of mammalian DPP-IV orthologues involves conserved mechanisms.


Assuntos
Cálcio/química , Dipeptidil Peptidase 4/metabolismo , Rim/enzimologia , Proteínas de Membrana/química , Zinco/química , Animais , Sítios de Ligação , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/isolamento & purificação , Humanos , Cinética , Proteínas de Membrana/isolamento & purificação , Ratos
10.
J Am Chem Soc ; 135(18): 7053-63, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23578032

RESUMO

Glycosyltransferases (GTs) are responsible for the biosynthesis of glycans, the most abundant organic molecules in nature. Their biological relevance makes necessary the knowledge of their catalytic mechanism, which in the case of retaining GTs is still a matter of debate. After the initial proposal of a double-displacement mechanism with formation of a covalent glycosyl-enzyme intermediate (CGE), new experimental and computational data are pointing out to a front-side attack as a plausible alternative. The question is then why family GT6 members, like bovine α1,3-galactosyltransferase (α1,3-GalT), have a nucleophilic residue (Glu317) situated close to the anomeric carbon. To answer this and other questions, QM(DFT)/MM calculations on the entire α1,3-GalT:substrates system (and for the E317A/E317Q mutants) have been carried out. We describe a substrate-assisted mechanism for retaining GTs consisting of the stabilization of the developing negative charge on the ß-phosphate by the hydrogen of the attacking hydroxyl group of the acceptor molecule. This interaction is impaired in the α1,3-GalT reactants, which explains why Glu317 is required to nucleophilically assist initial catalysis by "pushing" leaving-group departure. The presence of Glu317 opens the door to the possibility of a double-displacement mechanism in GT6 family. Our results suggest that in α1,3-GalT the substrate-assisted catalysis would be necessary in both mechanisms (for which we predict similar reaction rates), because the nucleophilic strength of Glu317 is reduced by the interactions it makes to ensure proper acceptor binding. Interestingly, the same effect would be found in the absence of the acceptor when Glu317 interacts with water molecules, which could explain the difficulties for isolating the CGE experimentally, and could be a strategy to avoid undesired hydrolysis of the donor substrate.


Assuntos
Galactosiltransferases/metabolismo , Animais , Biocatálise , Bovinos , Galactosiltransferases/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Especificidade por Substrato
11.
ACS Chem Biol ; 8(2): 443-50, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23181268

RESUMO

Acyltransferase domains control the extender unit recognition in Polyketide Synthases (PKS) and thereby the side-chain diversity of the resulting natural products. The enzyme engineering strategy presented here allows the alteration of the acyltransferase substrate profile to enable an engineered biosynthesis of natural product derivatives through the incorporation of a synthetic malonic acid thioester. Experimental sequence-function correlations combined with computational modeling revealed the origins of substrate recognition in these PKS domains and enabled a targeted mutagenesis. We show how a single point mutation was able to direct the incorporation of a malonic acid building block with a non-native functional group into erythromycin. This approach, introduced here as enzyme-directed mutasynthesis, opens a new field of possibilities beyond the state of the art for the combination of organic chemistry and biosynthesis toward natural product analogues.


Assuntos
Mutação Puntual , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Engenharia de Proteínas , Aciltransferases/química , Aciltransferases/genética , Aciltransferases/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Eritromicina/metabolismo , Malonatos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Policetídeo Sintases/química , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Especificidade por Substrato
12.
Carbohydr Res ; 356: 204-8, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22520506

RESUMO

Retaining glycosyltransferases (ret-GTs) are the enzymes responsible for the biosynthesis of highly specific glycosidic bonds and have drawn the interest of the scientific community. The catalytic mechanism of such enzymes is not yet fully understood and its study remains a challenge for both experimental and theoretical researches. In the case of ret-GTs where a well defined nucleophilic agent is identified in the vicinity of the anomeric center, a double-displacement mechanism via a covalent enzyme-glycosyl intermediate is commonly assumed and has received some experimental support, although not direct and univocal evidence has been obtained so far. This is the case for α-(1→3)-galactosyltransferase (α3GalT), a ret-GT from Bos taurus where a glutamate (Glu317) is in suitable position to act as a nucleophile. Here we perform density functional theory (DFT) quantum mechanics/molecular mechanics (QM/MM) calculations on the full α3GalT enzyme to analyze the role of Glu317 in the catalytic process. This is done not only for the double-displacement mechanism, where the function of the nucleophile is obvious, but also in the scenario of a front-side attack mechanism (via an oxocarbenium ion-like transition state (S(N)i) or an ion-pair oxocarbenium intermediate (S(N)i-like)). Glu317 is found to be essential in both cases. For a front-side attack, this residue would have a key role in leaving group departure and consequent stabilization of the increasing positive charge at the anomeric center. This finding alerts on the interpretation of the mutagenesis data as both, the formation of a covalent intermediate and a S(N)i or a S(N)i-like mechanism 'assisted' by a nucleophile, could be consistent with experiment. In addition, it could explain why the covalent enzyme-glycosyl intermediate has never been isolated.


Assuntos
Galactosiltransferases/química , Ácido Glutâmico/química , Animais , Sítios de Ligação , Biocatálise , Bovinos , Galactosiltransferases/metabolismo , Ácido Glutâmico/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Teoria Quântica , Termodinâmica
13.
J Am Chem Soc ; 134(10): 4743-52, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22352786

RESUMO

Glycosyltransferases (GTs) catalyze the highly specific biosynthesis of glycosidic bonds and, as such, are important both as drug targets and for biotechnological purposes. Despite their broad interest, fundamental questions about their reaction mechanism remain to be answered, especially for those GTs that transfer the sugar with net retention of the configuration at the anomeric carbon (retaining glycosyltransferases, ret-GTs). In the present work, we focus on the reaction catalyzed by lipopolysaccharyl-α-1,4-galactosyltransferase C (LgtC) from Neisseria meningitides. We study and compare the different proposed mechanisms (S(N)i, S(N)i-like, and double displacement mechanism via a covalent glycosyl-enzyme intermediate, CGE) by using density functional theory (DFT) and quantum mechanics/molecular mechanics (QM/MM) calculations on the full enzyme. We characterize a dissociative single-displacement (S(N)i) mechanism consistent with the experimental data, in which the acceptor substrate attacks on the side of the UDP leaving group that acts as a catalytic base. We identify several key interactions that help this front-side attack by stabilizing the transition state. Among them, Gln189, the putative nucleophile in a double displacement mechanism, is shown to favor the charge development at the anomeric center by about 2 kcal/mol, compatible with experimental mutagenesis data. We predict that using 3-deoxylactose as acceptor would result in a reduction of k(cat) to 0.6-3% of that for the unmodified substrates. The reactions of the Q189A and Q189E mutants have also been investigated. For Q189E, there is a change in mechanism since a CGE can be formed which, however, is not able to evolve to products. The current findings are discussed in the light of the available experimental data and compared with those for other ret-GTs.


Assuntos
Galactose/metabolismo , Glicosiltransferases/metabolismo , Teoria Quântica , Catálise , Glicosiltransferases/genética , Modelos Moleculares , Mutação
14.
Proteins ; 80(3): 703-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22189720

RESUMO

Mammalian lipoxygenases (LOXs) have been implicated in cellular defense response and are important for physiological homeostasis. Since their discovery, LOXs have been believed to function as monomeric enzymes that exhibit allosteric properties. In aqueous solutions, the rabbit 12/15-LOX is mainly present as hydrated monomer but changes in the local physiochemical environment suggested a monomer-dimer equilibrium. Because the allosteric character of the enzyme can hardly be explained using a single ligand binding-site model, we proposed that the binding of allosteric effectors may shift the monomer-dimer equilibrium toward dimer formation. To test this hypothesis, we explored the impact of an allosteric effector [13(S)-hydroxyoctadeca-9(Z),11(E)-dienoic acid] on the structural properties of rabbit 12/15-LOX by small-angle X-ray scattering. Our data indicate that the enzyme undergoes ligand-induced dimerization in aqueous solution, and molecular dynamics simulations suggested that LOX dimers may be stable in the presence of substrate fatty acids. These data provide direct structural evidence for the existence of LOX dimers, where two noncovalently linked enzyme molecules might work in unison and, therefore, such mode of association might be related to the allosteric character of 12/15-LOX. Introduction of negatively charged residues (W181E + H585E and L183E + L192E) at the intermonomer interface disturbs the hydrophobic dimer interaction of the wild-type LOX, and this structural alteration may lead to functional distortion of mutant enzymes.


Assuntos
Araquidonato 12-Lipoxigenase/química , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/metabolismo , Regulação Alostérica , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Cristalografia por Raios X , Ligantes , Ácidos Linoleicos/metabolismo , Simulação de Dinâmica Molecular , Mutação , Multimerização Proteica , Coelhos
15.
Int J Biochem Cell Biol ; 43(3): 363-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21093607

RESUMO

Dipeptidyl peptidase IV is an ectopeptidase with multiple physiological roles including the degradation of incretins, and a target of therapies for type 2 diabetes mellitus. Divalent cations can inhibit its activity, but there has been little effort to understand how they act. The intact membrane-bound form of porcine kidney dipeptidyl peptidase IV was purified by a simple and fast procedure. The purified enzyme hydrolyzed Gly-Pro-p-nitroanilide with an average V(max) of 1.397±0.003 µmol min(-1) mL(-1), k(cat) of 145.0±1.2 s(-1), K(M) of 0.138±0.005 mM and k(cat)/K(M) of 1050 mM(-1) s(-1). The enzyme was inhibited by bacitracin, tosyl-L-lysine chloromethyl ketone, and by the dipeptidyl peptidase IV family inhibitor L-threo-Ile-thiazolidide (K(i) 70 nM). The enzyme was inhibited by the divalent ions Ca(2+), Co(2+), Cd(2+), Hg(2+) and Zn(2+), following kinetic mechanisms of mixed inhibition, with K(i) values of 2.04×10(-1), 2.28×10(-2), 4.21×10(-4), 8.00×10(-5) and 2.95×10(-5) M, respectively. According to bioinformatic tools, Ca(2+) ions preferentially bound to the ß-propeller domain of the porcine enzyme, while Zn(2+) ions to the α-ß hydrolase domain; the binding sites were strikingly conserved in the human enzyme and other homologues. The functional characterization indicates that porcine and human homologues have very similar functional properties. Knowledge about the mechanisms of action of divalent cations may facilitate the design of new inhibitors.


Assuntos
Cátions Bivalentes/farmacologia , Dipeptidil Peptidase 4/metabolismo , Córtex Renal/enzimologia , Animais , Sítios de Ligação , Cálcio/metabolismo , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/isolamento & purificação , Inibidores da Dipeptidil Peptidase IV/farmacologia , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Íons , Cinética , Membranas/efeitos dos fármacos , Membranas/enzimologia , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Sus scrofa , Temperatura , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...