Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36978751

RESUMO

Pericoronary adipose tissue (PCAT) features on Computed Tomography (CT) have been shown to reflect local inflammation and increased cardiovascular risk. Our goal was to determine whether PCAT radiomics extracted from coronary CT angiography (CCTA) images are associated with intravascular optical coherence tomography (IVOCT)-identified vulnerable-plaque characteristics (e.g., microchannels (MC) and thin-cap fibroatheroma (TCFA)). The CCTA and IVOCT images of 30 lesions from 25 patients were registered. The vessels with vulnerable plaques were identified from the registered IVOCT images. The PCAT-radiomics features were extracted from the CCTA images for the lesion region of interest (PCAT-LOI) and the entire vessel (PCAT-Vessel). We extracted 1356 radiomic features, including intensity (first-order), shape, and texture features. The features were reduced using standard approaches (e.g., high feature correlation). Using stratified three-fold cross-validation with 1000 repeats, we determined the ability of PCAT-radiomics features from CCTA to predict IVOCT vulnerable-plaque characteristics. In the identification of TCFA lesions, the PCAT-LOI and PCAT-Vessel radiomics models performed comparably (Area Under the Curve (AUC) ± standard deviation 0.78 ± 0.13, 0.77 ± 0.14). For the identification of MC lesions, the PCAT-Vessel radiomics model (0.89 ± 0.09) was moderately better associated than the PCAT-LOI model (0.83 ± 0.12). In addition, both the PCAT-LOI and the PCAT-Vessel radiomics model identified coronary vessels thought to be highly vulnerable to a similar standard (i.e., both TCFA and MC; 0.88 ± 0.10, 0.91 ± 0.09). The most favorable radiomic features tended to be those describing the texture and size of the PCAT. The application of PCAT radiomics can identify coronary vessels with TCFA or MC, consistent with IVOCT. Furthermore, the use of CCTA radiomics may improve risk stratification by noninvasively detecting vulnerable-plaque characteristics that are only visible with IVOCT.

2.
medRxiv ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711678

RESUMO

Pericoronary adipose tissue (PCAT) features on CT have been shown to reflect local inflammation, and signals increased cardiovascular risk. Our goal was to determine if PCAT radiomics extracted from coronary CT angiography (CCTA) images are associated with intravascular optical coherence tomography (IVOCT)-identified vulnerable plaque characteristics (e.g., microchannels [MC] and thin-cap fibroatheroma [TCFA]). CCTA and IVOCT images of 30 lesions from 25 patients were registered. Vessels with vulnerable plaques were identified from the registered IVOCT images. PCAT radiomics features were extracted from CCTA images for the lesion region of interest (PCAT-LOI) and the entire vessel (PCAT-Vessel). We extracted 1356 radiomics features, including intensity (first-order), shape, and texture features. Features were reduced using standard approaches (e.g., high feature correlation). Using stratified three-fold cross-validation with 1000 repeats, we determined the ability of PCAT radiomics features from CCTA to predict IVOCT vulnerable plaque characteristics. In identification of TCFA lesions, PCAT-LOI and PCAT-Vessel radiomics models performed comparably (AUC±standard deviation 0.78±0.13, 0.77±0.14). For identification of MC lesions, PCAT-Vessel radiomics model (0.89±0.09) was moderately better associated than that of PCAT-LOI model (0.83±0.12). Both PCAT-LOI and PCAT-Vessel radiomics models also similarly identified coronary vessels thought to be highly vulnerable (i.e., both TCFA and MC) (0.88±0.10, 0.91±0.09). Favorable radiomics features tended to be those describing texture and size of PCAT. PCAT radiomics can identify coronary vessels with TCFA or MC, consistent with IVOCT. CCTA radiomics may improve risk stratification by noninvasively detecting vulnerable plaque characteristics that are only visible with IVOCT.

3.
Bioengineering (Basel) ; 9(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36354559

RESUMO

Microvessels in vascular plaque are associated with plaque progression and are found in plaque rupture and intra-plaque hemorrhage. To analyze this characteristic of vulnerability, we developed an automated deep learning method for detecting microvessels in intravascular optical coherence tomography (IVOCT) images. A total of 8403 IVOCT image frames from 85 lesions and 37 normal segments were analyzed. Manual annotation was performed using a dedicated software (OCTOPUS) previously developed by our group. Data augmentation in the polar (r,θ) domain was applied to raw IVOCT images to ensure that microvessels appear at all possible angles. Pre-processing methods included guidewire/shadow detection, lumen segmentation, pixel shifting, and noise reduction. DeepLab v3+ was used to segment microvessel candidates. A bounding box on each candidate was classified as either microvessel or non-microvessel using a shallow convolutional neural network. For better classification, we used data augmentation (i.e., angle rotation) on bounding boxes with a microvessel during network training. Data augmentation and pre-processing steps improved microvessel segmentation performance significantly, yielding a method with Dice of 0.71 ± 0.10 and pixel-wise sensitivity/specificity of 87.7 ± 6.6%/99.8 ± 0.1%. The network for classifying microvessels from candidates performed exceptionally well, with sensitivity of 99.5 ± 0.3%, specificity of 98.8 ± 1.0%, and accuracy of 99.1 ± 0.5%. The classification step eliminated the majority of residual false positives and the Dice coefficient increased from 0.71 to 0.73. In addition, our method produced 698 image frames with microvessels present, compared with 730 from manual analysis, representing a 4.4% difference. When compared with the manual method, the automated method improved microvessel continuity, implying improved segmentation performance. The method will be useful for research purposes as well as potential future treatment planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA