Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107274, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588809

RESUMO

The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.

2.
J Biosci Bioeng ; 137(3): 204-210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242757

RESUMO

Filamentous fungi produce numerous industrially important enzymes. Among them, Aspergillus oryzae-derived enzymes are widely used in various fermentation applications. In this study, we constructed self-cloning strains that overproduce multiple biomass-degrading enzymes under the control of a strong promoter of α-amylase-coding gene (amyB) using the industrial strain A. oryzae AOK11. Two strains (strains 2-4 and 3-26) were introduced with different combinations of genes encoding xylanase (xynG1), phytase (phyA), pectin lyase (pelA), and polygalacturonase (pgaB). These strains had at least one copy of each enzyme gene derived from the expression cassette in the genome. The transcription levels of enzyme-coding genes introduced were more than 100-fold higher than those in the parent strain. Reflecting the high transcription levels, the activities of the enzymes derived from the expression cassettes of these two strains were significantly higher than those of the parent strain in both liquid and solid-state cultures. Even in ventilated solid-state cultures that were scaled up using mechanical equipment for practical applications, the two strains showed significantly higher enzyme activity than the parent strain. These results indicate that these strains constructed using a safe self-cloning technique represent industrially valuable practical strains that can be used in the food and livestock industries.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/metabolismo , Biomassa , Regiões Promotoras Genéticas , Clonagem Molecular
3.
Commun Biol ; 6(1): 1009, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794162

RESUMO

Regulated Ire1-dependent decay (RIDD) is a feedback mechanism in which the endoribonuclease Ire1 cleaves endoplasmic reticulum (ER)-localized mRNAs encoding secretory and membrane proteins in eukaryotic cells under ER stress. RIDD is artificially induced by chemicals that generate ER stress; however, its importance under physiological conditions remains unclear. Here, we demonstrate the occurrence of RIDD in filamentous fungus using Aspergillus oryzae as a model, which secretes copious amounts of amylases. α-Amylase mRNA was rapidly degraded by IreA, an Ire1 ortholog, depending on its ER-associated translation when mycelia were treated with dithiothreitol, an ER-stress inducer. The mRNA encoding maltose permease MalP, a prerequisite for the induction of amylolytic genes, was also identified as an RIDD target. Importantly, RIDD of malP mRNA is triggered by inducing amylase production without any artificial ER stress inducer. Our data provide the evidence that RIDD occurs in eukaryotic microorganisms under physiological ER stress.


Assuntos
Amilases , Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo
4.
J Biosci Bioeng ; 136(3): 213-222, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429763

RESUMO

Daqu, a fermentation starter, was important source of key flavors of Chinese Baijiu. The quality of Chinese Baijiu could be significantly affected by the ester-synthesis microorganisms. In order to clarify the microbial community that promoted the ester formation in Daqu, the dynamic changes of microbial community and non-volatile profiles of Qing-flavor Daqu and Nong-flavor Daqu samples through the whole making process were investigated by Illumina MiSeq platform and liquid chromatograph-mass spectrometry (LC-MS). The non-volatile compounds related to ester synthesis were identified by comparing with ester synthesis pathway and partial least squares discriminant analysis (PLS-DA). Correlations between microbial community and non-volatile metabolites involved in ester synthesis of two types of Daqu were disclosed by Pearson correlation analysis. Results showed that a total of 50 key compounds involved in ester synthesis were identified and 25 primary functional microorganisms were screened in 39 samples. Among them, in Qing-flavor Daqu, the top three primary functional microorganisms that had strong correlations with ester-formation precursors were Lactobacillus, Pantoea, and Sphingomonas; Lactobacillus and Pantoea had significantly positive interactions with various microorganisms, but Sphingomonas did not interact with others. In Nong-flavor Daqu, the top three primary functional microorganisms that had strong correlations with ester-formation precursors were Candida, Apiotrichum, and Cutaneotrichosporon. Candida showed strong positive correlation with other microorganisms, whereas Apiotrichum and Cutaneotrichosporon had no interaction with other microorganisms. The study could help our understanding of the microbial metabolism process in Daqu and provided a scientific basis for a controllable and feasible fermentation system.


Assuntos
Bebidas Alcoólicas , Microbiota , Bebidas Alcoólicas/análise , Fermentação , Lactobacillus
5.
J Sci Food Agric ; 103(8): 3939-3949, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36352497

RESUMO

BACKGROUND: The ester-synthesis enzymes influenced by environmental factors during Daqu-making process largely determine the flavor of Chinese liquor, but the main ester-synthesis enzyme and its key influencer remain unclear. Here, the volatile ester profiles over the whole Daqu-making process, under different treatments, for at least 90 days, were carefully analyzed, and the potential ester-synthesis enzymes, as well as their dependently environmental factors, were explored. RESULTS: In the detected 46 volatile esters, only the short-chain (C4-C8) and medium-chain (C9-C13) ester content obviously changed, as the primary contributor discriminating different samples. Their trends were both consistent with that of the alcohols and the primary metabolism, which included alcohol acyltransferases (AATs) reaction with alcohols and acyl-CoAs as the substrates. Among the potential ester-synthesis enzymes, the typical AAT activity also exhibited the highest correlation with the short- and medium-chain esters (r > 0.78, P < 0.05). The Mantel test between environmental factors and ester production showed that temperature of Daqu was directly correlated with the short-chain esters (r = 0.58, P < 0.01) and AAT activity (r = 0.56, P < 0.01). Further, the short- and medium-chain ester content in Daqu under the treatment nearer to the reported optimal temperature of 40-50 °C of AATs reaction was overall higher than that of the other treatment Daqu. CONCLUSION: This study revealed that the temperature-dependent AATs reaction was the main enzymatic method producing the short- and medium-chain esters over the whole Daqu-making process. The results could contribute to the flavor improvement of Baijiu. © 2022 Society of Chemical Industry.


Assuntos
Aciltransferases , Ésteres , Ésteres/química , Temperatura , Aciltransferases/metabolismo , Álcoois , Fermentação
6.
J Biosci Bioeng ; 134(2): 133-137, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35643851

RESUMO

Enzyme histochemistry via mass spectrometry imaging (MSI) has garnered attention as a straightforward approach for visualizing enzymatic reactions. While several studies in the medical and physiological fields have shown its promising application potential, its applicability to agricultural or food studies has not yet been demonstrated. Rice koji, known as an enzyme source for various fermented products, is a suitable model for demonstrating the applicability of this method to food-related materials. In this study, the enzymatic reaction of dipeptidyl peptidase B (DppB) in rice koji was visualized using MSI for the first time. The method was optimized and applied to investigate the effects of rice variety, polishing ratio, and cultivation time on the location of the DppB reaction. The DppB enzymatic reaction was found to occur in different locations in each of the two rice varieties, Yamadanishiki and Hakutsurunishiki. The polishing ratio also affected the distribution of the DppB enzymatic reactions. Furthermore, a time-course investigation of rice koji cultivation revealed that while the location of the reaction was largely associated with mycelial penetration, the structure and features of the rice grain may also affect the location of the enzymatic reaction. In summary, these results demonstrate the applicability of enzyme histochemistry by MSI to food-related materials.


Assuntos
Oryza , Dipeptidil Peptidases e Tripeptidil Peptidases , Fermentação , Espectrometria de Massas , Oryza/química
7.
J Food Biochem ; 46(10): e14277, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35748096

RESUMO

Chinese Jiang-flavor Baijiu is the most widely consumed liquor. Jiang-flavor Daqu, a fermentation starter, is important sources of key flavors of Jiang-flavor Baijiu. Some microbes play significant roles in flavor formation of Daqu. In order to clarify the microbial population that promotes the formation of Daqu flavor, we use high throughput sequencing technology combined with headspace solid-phase microextraction gas chromatography-mass spectrometry to investigate microbial population and volatile compounds in Jiang-flavor Daqu. In addition, the dynamic changes of physicochemical factors and enzyme activities in Jiang-flavor Daqu were investigated. Correlations between microbial population, volatile compounds, physicochemical factors, and enzyme activities of Jiang-flavor Daqu were disclosed by redundancy analysis and Spearman correlation analysis. A total of 66 volatile compounds were identified and 14 primary microorganisms were selected. Results showed that high temperature environment could promote the formation of acids, aldehydes and ketones, phenols, furans by affecting the growth of Monascus, Trichomonascus, Cutaneotrichosporon, Wallemia, Millerozyma, Nigrospora, Cladosporium, Bacillus, and Pediococcus in the early fermentation stage. While high nitrogen environment was more suitable for the growth of Virgibacillus and Kroppenstedtia, who could promote the formation of pyrazines in the late fermentation stage. PRACTICAL APPLICATIONS: This study has provided a scientific basis for the directed regulation of Daqu fermentation through physicochemical factors, developed scientific basis for artificially constructing Daqu microbial population and obtaining an easy-to-operate, reproducible fermentation system for Daqu production.


Assuntos
Aldeídos , Nitrogênio , Fermentação , Furanos , Cetonas , Fenóis , Pirazinas
8.
J Biosci Bioeng ; 134(1): 34-40, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35440397

RESUMO

The quality of rice koji greatly affects the quality of sake. To accurately evaluate the quality of rice koji, various approaches for the evaluation of rice koji are required. In this study, we directly and simultaneously visualized the distribution of polypeptides in rice koji using mass spectrometry imaging. We demonstrated four koji-specific polypeptides at m/z 4660, 6140, 8170, and 11,840 and one rice-derived polypeptide at m/z 5330. To identify the koji-specific polypeptides, extracts from rice koji were separated using tricine SDS-PAGE, and the band appeared to coincide with the polypeptide at m/z 11,840 was identified to be the N-terminal fragment of α-amylase. The polypeptide seemed to have no hydrolytic activity based on the primary structure of α-amylase. The polypeptide at m/z 11,840 seemed to coincide with the fragmented α-amylase was detected at the later stage of koji making (after 42 h). At the same period during koji making, the increasing rate of α-amylase activity decreased compared to that of glucoamylase activity, suggesting that α-amylase fragmentation possibly leads to the deceleration of the increase in α-amylase activity at the later stage of koji making. This is the first study to directly and simultaneously demonstrate the distribution of polypeptides in rice koji using mass spectrometry imaging and imply the relationship between α-amylase fragmentation and activity in rice koji.


Assuntos
Aspergillus oryzae , Oryza , Aspergillus oryzae/química , Espectrometria de Massas , Oryza/química , Peptídeos , alfa-Amilases/química
9.
PLoS Genet ; 18(1): e1009965, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041649

RESUMO

Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species.


Assuntos
Aspergillus/crescimento & desenvolvimento , Gliotoxina/farmacologia , Metiltransferases/genética , Fatores de Transcrição/genética , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus oryzae/efeitos dos fármacos , Aspergillus oryzae/genética , Aspergillus oryzae/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Gliotoxina/biossíntese , RNA-Seq
10.
Biosci Biotechnol Biochem ; 85(9): 2076-2083, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34245563

RESUMO

We examined the role of the intracellular α-glucosidase gene malT, which is part of the maltose-utilizing cluster (MAL cluster) together with malR and malP, in amylolytic gene expression in Aspergillus oryzae. malT disruption severely affected fungal growth on medium containing maltose or starch. Furthermore, the transcription level of the α-amylase gene was significantly reduced by malT disruption. Given that the transcription factor AmyR responsible for amylolytic gene expression is activated by isomaltose converted from maltose incorporated into the cells, MalT may have transglycosylation activity that converts maltose to isomaltose. Indeed, transglycosylated products such as isomaltose/maltotriose and panose were generated from the substrate maltose by MalT purified from a malT-overexpressing strain. The results of this study, taken together, suggests that MalT plays a pivotal role in AmyR activation via its transglycosylation activity that converts maltose to the physiological inducer isomaltose.


Assuntos
Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/metabolismo , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Aspergillus oryzae/genética , Genes Fúngicos , Glicosilação , Maltose/metabolismo , Proteólise , alfa-Amilases/genética
11.
J Biosci Bioeng ; 132(4): 321-326, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34176737

RESUMO

The black koji mold, Aspergillus luchuensis, which belongs to Aspergillus section Nigri, is used for the production of traditional Japanese spirits (shochu) mainly in the southern districts of Japan. This mold is known to produce amylolytic enzymes essential for shochu production; however, mechanisms regulating amylolytic gene expression in A. luchuensis have not been studied in as much detail as those in the yellow koji mold, Aspergillus oryzae. Here, we examined the gene expression profiles of deletion mutants of transcription factors orthologous to A. oryzae AmyR and CreA in A. luchuensis. A. luchuensis produces acid-unstable (AmyA) and acid-stable (AsaA) α-amylases. AmyA production and amyA gene expression were not influenced by amyR or creA deletion, indicating that amyA was constitutively expressed. In contrast, asaA gene expression was significantly down- and upregulated upon deletion of amyR and creA, respectively. Furthermore, the glaA and agdA genes (encoding glucoamylase and α-glucosidase, respectively) showed expression profiles similar to those of asaA. Thus, genes that play pivotal roles in starch saccharification, asaA, glaA, and agdA, were found to be regulated by AmyR and CreA. Moreover, despite previous reports on AsaA being only produced in solid-state culture, deletion of the ortholog of A. oryzae flbC, which is involved in the expression of the solid-state culture-specific genes, did not affect AsaA α-amylase activity, suggesting that FlbC was not associated with asaA expression.


Assuntos
Aspergillus oryzae , Fatores de Transcrição , Aspergillus , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Glucana 1,4-alfa-Glucosidase , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Front Microbiol ; 12: 677603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108952

RESUMO

The filamentous fungus Aspergillus oryzae, also known as yellow koji mold, produces high levels of hydrolases such as amylolytic and proteolytic enzymes. This property of producing large amounts of hydrolases is one of the reasons why A. oryzae has been used in the production of traditional Japanese fermented foods and beverages. A wide variety of hydrolases produced by A. oryzae have been used in the food industry. The expression of hydrolase genes is induced by the presence of certain substrates, and various transcription factors that regulate such expression have been identified. In contrast, in the presence of glucose, the expression of the glycosyl hydrolase gene is generally repressed by carbon catabolite repression (CCR), which is mediated by the transcription factor CreA and ubiquitination/deubiquitination factors. In this review, we present the current knowledge on the regulation of hydrolase gene expression, including CCR, in A. oryzae.

13.
Appl Microbiol Biotechnol ; 105(7): 2701-2711, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33760931

RESUMO

Aspergillus species are closely associated with humanity through fermentation, infectious disease, and mycotoxin contamination of food. Members of this genus produce various enzymes to degrade plant polysaccharides, including starch, cellulose, xylan, and xyloglucan. This review focus on the machinery of the xyloglucan degradation using glycoside hydrolases, such as xyloglucanases, isoprimeverose-producing oligoxyloglucan hydrolases, and α-xylosidases, in Aspergillus species. Some xyloglucan degradation-related glycoside hydrolases are well conserved in this genus; however, other enzymes are not. Cooperative actions of these glycoside hydrolases are crucial for xyloglucan degradation in Aspergillus species. KEY POINTS: •Xyloglucan degradation-related enzymes of Aspergillus species are reviewed. •Each Aspergillus species possesses a different set of glycoside hydrolases. •The machinery of xyloglucan degradation of A. oryzae is overviewed.


Assuntos
Glucanos , Xilanos , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
14.
Biosci Biotechnol Biochem ; 85(2): 452-463, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604648

RESUMO

The uptake of di/tripeptides is mediated by the proton-dependent oligopeptide transporter (POT) family. In this study, 3 POT family transporters, designated PotA, PotB, and PotC were identified in Aspergillus oryzae. Growth comparison of deletion mutants of these transporter genes suggested that PotB and PotC are responsible for di/tripeptide uptake. PotA, which had the highest sequence similarity to yeast POT (Ptr2), contributed little to the uptake. Nitrogen starvation induced potB and potC expression, but not potA expression. When 3 dipeptides were provided as nitrogen sources, the expression profiles of these genes were different. PrtR, a transcription factor that regulates proteolytic genes, was involved in regulation of potA and potB but not in potC expression. Only potC expression levels were dramatically reduced by disruption of ubrA, an orthologue of yeast ubiquitin ligase UBR1 responsible for PTR2 expression. Expression of individual POT genes is apparently controlled by different regulatory mechanisms.


Assuntos
Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Dipeptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética
15.
Curr Genet ; 66(4): 729-747, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32072240

RESUMO

Gene expression using alternative transcription start sites (TSSs) is an important transcriptional regulatory mechanism for environmental responses in eukaryotes. Here, we identify two alternative TSSs in the enolase-encoding gene (enoA) in Aspergillus oryzae, an industrially important filamentous fungus. TSS use in enoA is strictly dependent on the difference in glycolytic and gluconeogenic carbon sources. Transcription from the upstream TSS (uTSS) or downstream TSS (dTSS) predominantly occurs under gluconeogenic or glycolytic conditions, respectively. In addition to enoA, most glycolytic genes involved in reversible reactions possess alternative TSSs. The fbaA gene, which encodes fructose-bisphosphate aldolase, also shows stringent alternative TSS selection, similar to enoA. Alignment of promoter sequences of enolase-encoding genes in Aspergillus predicted two conserved regions that contain a putative cis-element required for enoA transcription from each TSS. However, uTSS-mediated transcription of the acuN gene, an enoA ortholog in Aspergillus nidulans, is not strictly dependent on carbon source, unlike enoA. Furthermore, enoA transcript levels in glycolytic conditions are higher than in gluconeogenic conditions. Conversely, acuN is more highly transcribed in gluconeogenic conditions. This suggests that the stringent usage of alternative TSSs and higher transcription in glycolytic conditions in enoA may reflect that the A. oryzae evolutionary genetic background was domesticated by exclusive growth in starch-rich environments. These findings provide novel insights into the complexity and diversity of transcriptional regulation of glycolytic/gluconeogenic genes among Aspergilli.


Assuntos
Aspergillus oryzae/genética , Fosfopiruvato Hidratase/genética , Sítio de Iniciação de Transcrição , Regiões 5' não Traduzidas , Aspergillus nidulans/genética , Aspergillus nidulans/fisiologia , Aspergillus oryzae/enzimologia , Carbono/metabolismo , Elementos Facilitadores Genéticos , Regulação Fúngica da Expressão Gênica , Gluconeogênese/genética , Glicólise/fisiologia , Íntrons , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
J Biosci Bioeng ; 129(2): 150-154, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31492608

RESUMO

A tannase-encoding gene, AotanB, from Aspergillus oryzae RIB40 was overexpressed in A. oryzae AOK11 niaD-deficient mutant derived from an industrial strain under the control of an improved glucoamylase gene promoter PglaA142. The recombinant tannase, designated as rAoTanBO, was produced efficiently as an active extracellular enzyme. Purified rAoTanBO showed a smeared band with a molecular mass of approximately 80-100 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The rAoTanBO had a molecular mass of 65 kDa, after treatment with endo-ß-N-acetylglucosaminidase H. Purified rAoTanBO exhibited maximum activity at 30-35°C and pH 6.0. The tannase activity of purified rAoTanBO towards natural and artificial substrates was 2-8 folds higher than that of the recombinant enzyme produced by Pichia pastoris, designated as rAoTanBP. N-terminus of the mature rAoTanBP had six more amino acids than the N-terminus of the mature rAoTanBO. Kinetic analyses showed that rAoTanBO had higher catalytic efficiency (kcat/Km) than rAoTanBP. rAoTanBO was stable up to 60°C and higher thermostability than rAoTanBP. N-linked oligosaccharides had no effect on the activity and stability of rAoTanBO and rAoTanBP.


Assuntos
Aspergillus oryzae/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Glucana 1,4-alfa-Glucosidase/genética , Regiões Promotoras Genéticas , Aspergillus oryzae/genética , Biocatálise , Hidrolases de Éster Carboxílico/genética , Eletroforese em Gel de Poliacrilamida , Cinética , Peso Molecular , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
J Biosci Bioeng ; 129(3): 296-301, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31623949

RESUMO

In sake brewing, the quality of rice koji is evaluated by experienced sake brewers based on visual inspection of the haze, which is defined by the extent of fungal hyphae spread on/into the rice grains. There is an increasing interest in understanding the factors that affect the quality of rice koji, which is dependent on its making process. Several studies have focused on the degree of mycelial penetration (haze-komi) and enzyme production during rice koji production. However, there are limited analytical methods available to monitor hyphal growth on a solid surface. Here we used a ß-glucuronidase (GUS)-expressing strain of Aspergillus oryzae to visualize and map the fungal growth on rice koji grains. Observation of indigo color revealed that A. oryzae hyphae penetrated the steamed rice grain in the early stage (24 h) of rice koji-making before spreading on the surface during the later stages. Additionally, hyphae penetrated along the endosperm cells and penetrated the cells to form the sou-haze. Furthermore, mass spectrometry imaging (MSI) of glucose demonstrated that the area of mycelial penetration is directly correlated with the spread of glucose during fermentation. This is the first report on utilizing new tools such as GUS-body-mapping of A. oryzae and MSI to monitor fungal growth during rice koji making.


Assuntos
Aspergillus oryzae/enzimologia , Glucuronidase/metabolismo , Aspergillus oryzae/química , Fermentação , Glucose/metabolismo , Espectrometria de Massas , Oryza/microbiologia , Vapor , Temperatura
18.
Biosci Biotechnol Biochem ; 83(8): 1385-1401, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31159661

RESUMO

The koji mold Aspergillus oryzae has been used in traditional Japanese food and beverage fermentation for over a thousand years. Amylolytic enzymes are important in sake fermentation, wherein production is induced by starch or malto-oligosaccharides. This inducible production requires at least two transcription activators, AmyR and MalR. Among amylolytic enzymes, glucoamylase GlaB is produced exclusively in solid-state culture and plays a critical role in sake fermentation owing to its contribution to glucose generation from starch. A recent study demonstrated that glaB gene expression is regulated by a novel transcription factor, FlbC, in addition to AmyR in solid-state culture. Amylolytic enzyme production is generally repressed by glucose due to carbon catabolite repression (CCR), which is mediated by the transcription factor CreA. Modifying CCR machinery, including CreA, can improve amylolytic enzyme production. This review focuses on the role of transcription factors in regulating A. oryzae amylolytic gene expression.


Assuntos
Aspergillus oryzae/genética , Regulação Fúngica da Expressão Gênica , Glucana 1,4-alfa-Glucosidase/metabolismo , Proteínas Fúngicas/genética , Maltose/metabolismo , Fatores de Transcrição/metabolismo
19.
mBio ; 10(2)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862750

RESUMO

Aspergillosis associated with azole-resistant Aspergillus fumigatus has a mortality rate that can approach 90% in certain patient populations. The best-understood avenue for azole resistance involves changes in the cyp51A gene that encodes the target of azole drugs, lanosterol α-14 demethylase. The most common azole resistance allele currently described is a linked change corresponding to a change in the coding sequence of cyp51A and a duplication of a 34-bp region in the promoter leading to a tandem repeat (TR). Our previous studies identified a positively acting transcription factor called AtrR that binds to the promoter of cyp51A as well as that of an important membrane transporter protein gene called abcG1 In this work, we characterize two different mutant alleles of atrR, either an overproducing or an epitope-tagged form, causing constitutive activation of this factor. Using an epitope-tagged allele of atrR for chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq), the genomic binding sites for AtrR were determined. Close to 900 genes were found to have an AtrR response element (ATRE) in their promoter regions. Transcriptome evaluation by RNA sequencing (RNA-seq) indicated that both alleles led to elevated transcription of a subset of target genes. An electrophoretic mobility shift assay and DNase I protection mapping localized the ATREs in both the abcG1 and cyp51A promoters. The ATRE in cyp51A was located within the 34-bp repeat element. Virulence in a murine model was compromised when AtrR was either deleted or overproduced, indicating that the proper dosage of this factor is key for pathogenesis.IMPORTANCEAspergillus fumigatus is the major filamentous fungal pathogen in humans. Infections associated with A. fumigatus are often treated with azole drugs, but resistance to these antifungal agents is increasing. Mortality from aspergillosis associated with azole-resistant fungi is extremely high. Previous work has identified transcriptional control of the azole drug target-encoding gene cyp51A as an important contributor to resistance in A. fumigatus Here, we demonstrate that the transcription factor AtrR binds to a region in the cyp51A promoter that is associated with alleles of this gene conferring clinically important azole resistance. Using high-throughput genomic technologies, we also uncover a large suite of target genes controlled by AtrR. These data indicate that AtrR coordinately regulates many different processes involved in drug resistance, metabolism, and virulence. Our new understanding of AtrR function provides important new insight into the pathogenesis of A. fumigatus.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Azóis/farmacologia , Farmacorresistência Fúngica , Proteínas Fúngicas/metabolismo , Regulon , Fatores de Transcrição/metabolismo , Aspergillus fumigatus/genética , Imunoprecipitação da Cromatina , DNA Fúngico/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas Fúngicas/genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Análise de Sequência de DNA , Fatores de Transcrição/genética
20.
Org Lett ; 20(19): 6178-6182, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30230338

RESUMO

The biosynthetic pathway of brassicicenes, derived from the phytopathogen Pseudocercospora fijiensis, was fully reconstituted. Heterologous expression of the eight genes highly expressed in infected leaf tissues generated a new brassicicene derivative as a final product. Together with the characterization of P450 from Alternaria brassicicola, a late stage of the biosynthetic pathway, which generates remarkable structural diversity, has been proposed. Notably, a unique P450 that converts 3 to the structurally distinct 4 and 6 was identified.


Assuntos
Ascomicetos/metabolismo , Diterpenos/metabolismo , Alternaria/genética , Ascomicetos/genética , Aspergillus oryzae/metabolismo , Biocatálise , Vias Biossintéticas , Genes Fúngicos , Estrutura Molecular , Família Multigênica , Oxirredução , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...