RESUMO
Green silver nanoparticles (G-Ag NPs) have contributed to the development of ecological technologies with low environmental impact and safer for human health, as well as demonstrating potential for the control of vectors and intermediate hosts. However, knowledge about its toxicity in the early stages of gastropod development remains scarce. Therefore, the current study aimed to investigate the toxicity of G-Ag NPs synthesized from Croton urucurana leaf extracts in snail species Biomphalaria glabrata, which is an intermediate host for Schistosoma mansoni parasite. G-Ag NPs were synthesized using two types of plant extracts (aqueous and hydroethanolic) and characterized using multiple techniques. Bioassays focused on investigating G-Ag NPs and plant extracts were carried out with embryos and newly hatched snails, for 144 h and 96 h, respectively; toxicity was analyzed based on mortality, hatching, development inhibition, and morphological changes. Results have shown that both G-Ag NPs were more toxic to embryos and newly hatched snails than the investigated plant extracts. G-Ag NPs deriving from aqueous extract have higher molluscicidal activity than those deriving from hydroethanolic extract. Both G-Ag NPs induced mortality, hatching delay, development inhibition, and morphological changes (i.e., hydropic embryos), indicating their molluscicidal activities. Moreover, embryos were more sensitive to G-Ag NPs than newly hatched snails. Thus, the toxicity of G-Ag NPs to freshwater snails depends on the type of extracts and the snail's developmental stages. These findings can contribute to the development of green nanobiotechnologies applicable to control snails of medical importance.
Assuntos
Biomphalaria , Croton , Nanopartículas Metálicas , Extratos Vegetais , Prata , Animais , Prata/toxicidade , Biomphalaria/efeitos dos fármacos , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Croton/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Água Doce , Folhas de Planta/química , Moluscocidas/toxicidade , Schistosoma mansoni/efeitos dos fármacos , Química VerdeRESUMO
In aquaculture, to ensure animal welfare in pre-slaughter and slaughter stages, it is fundamental that fish are insensible. A method for evaluating fish insensibility is based on visual sensibility indicators (VSI) assessment (i.e., self-initiated behavior, responses to stimuli and reflexes). However, many stimuli used to assess fish responses are painful. Therefore, this study verifies whether the presence/absence of a dorsal fin erection (DFE) response can be used as a painless VSI in Nile tilapia (Oreochromis niloticus). Three stunning protocols were applied to fish: benzocaine anesthesia (40 mg/L and 80 mg/L), ice water immersion (0-1, 2-3 and 5-6 °C) and CO2 stunning. After these stunning methods were applied in fish, the time of loss and return of DFE was observed, along with the vestibulo-ocular reflex (VOR). All fish stunned using benzocaine and ice water immersion lose both VSIs, while 95% of fish stunned using CO2 lose these VSIs. In all treatments, DFEs return quicker than VOR. Therefore, DFE can be used as a VSI in Nile tilapia, which is simple for producers to assess and does not require a painful stimulus. However, the DFE alone does not totally ensure fish insensibility and must be used together with other well-established VSIs at fish farms.
RESUMO
Considering that most animals in an aquatic ecosystem are invertebrates, concerns about the ecotoxicological impact of emerging pollutants, such as nanomaterials, in these populations are relevant, which can lead to loss of aquatic biodiversity. However, knowledge concerning the effects of iron-based nanoparticles (IONPs) at cell and tissue-levels on freshwater gastropods remains limited. Thus, the present study aimed to analyse the histopathological changes and inflammatory response in the freshwater snail Biomphalaria glabrata after chronic exposure to gluconic-acid functionalized IONPs (GLA-IONPs) in comparison with their dissolved counterpart (FeCl3). Snails were exposed to both iron forms (1.0, 2.5, 6.25, and 15.62 mg L-1) for 28 days, and the qualitative and quantitative histopathological assessment on hermaphrodite gonads was conducted, following by analysis of histopathological indices and inflammatory responses. Results showed that both iron forms (GLA-IONPs and FeCl3) induced several gonadal histopathologies in the snails, mainly atresic acini, vacuolization of pre-vitellogenic oocytes, and atresic oocytes in a concentration-dependent pattern. GLA-IONPs induced a more intense inflammatory response and high frequency of vacuolized vitellogenic oocytes in comparison with FeCl3. Environmentally relevant concentration (2.5 mg L-1) of GLA-IONPs and FeCl3 induced high gonadal histopathological indices, indicating their potential reproductive toxicity. The current study showed that the chronic exposure of snails to GLA-IONPs and their dissolved counterpart (FeCl3) induced several gonadal histopathological changes and inflammatory responses in B. glabrata, confirming their potential risk to aquatic biodiversity.
Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Cloretos , Compostos Férricos/toxicidade , Água Doce , Gônadas , Nanopartículas Magnéticas de Óxido de Ferro , Poluentes Químicos da Água/toxicidadeRESUMO
Iron oxide nanoparticles (IONPs) have been applied in several sectors in the environmental field, such as aquatic nanoremediation, due to their unique superparamagnetic and nanospecific properties. However, the knowledge of chronic toxicity of IONPs on aquatic invertebrate remains limited. Thus, the present study aimed to analyze the chronic toxicity of gluconic acid-functionalized IONPs (GLA-IONPs) and their dissolved counterpart (FeCl3) to freshwater snail Biomphalaria glabrata. GLA-IONPs were synthesized and characterized by multiple techniques, and the snails were exposed to both Fe forms at environmentally relevant concentrations (1.0-15.6 mg L-1) for 28 days. The bioaccumulation, mortality rate, behavior impairments, morphological alterations, fecundity and fertility of snails were analyzed. Results showed that GLA-IONPs induced high iron bioaccumulation in the entire soft tissue portion. Chronic exposure to GLA-IONP increased the behavioral impairments of snails compared to iron ions and control groups. Both Fe forms reduced the fecundity, while the mortality and reduced fertility were observed only after the exposure to GLA-IONPs at 15.6 mg L-1. Overall results indicated the behavioral impairments and reproductive toxicity associated, possibly, to bioaccumulation of GLA-IONPs in the B. glabrata. These results can be useful for the development of eco-friendly nanotechnologies.
Assuntos
Biomphalaria , Animais , Ecossistema , Nanopartículas Magnéticas de Óxido de Ferro , Reprodução , Medição de RiscoRESUMO
Iron oxide nanoparticles (IONPs) are used in several medical and environmental applications, but their mechanism of action and hazardous effects to early developmental stages of fish remain unknown. Thus, the present study aimed to assess the developmental toxicity of citrate-functionalized IONPs (γ-Fe2O3 NPs), in comparison with its dissolved counterpart, in zebrafish (Danio rerio) after static and semi-static exposure. Embryos were exposed to environmental concentrations of both iron forms (0.3, 0.6, 1.25, 2.5, 5 and 10 mg L-1) during 144 h, jointly with negative control group. The interaction and distribution of both Fe forms on the external chorion and larvae surface were measured, following by multiple biomarker assessment (mortality, hatching rate, neurotoxicity, cardiotoxicity, morphological alterations and 12 morphometrics parameters). Results showed that IONPs were mainly accumulated on the zebrafish chorion, and in the digestive system and liver of the larvae. Although the IONPs induced low embryotoxicity compared to iron ions in both exposure conditions, these nanomaterials induced sublethal effects, mainly cardiotoxic effects (reduced heartbeat, blood accumulation in the heart and pericardial edema). The semi-static exposure to both iron forms induced high embryotoxicity compared to static exposure, indicating that the nanotoxicity to early developmental stages of fish depends on the exposure system. This is the first study concerning the role of the exposure condition on the developmental toxicity of IONPs on fish species.
Assuntos
Compostos Férricos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cloretos , Embrião não Mamífero/efeitos dos fármacos , Ferro/farmacologia , Larva/efeitos dos fármacos , Nanopartículas/toxicidade , Peixe-Zebra/embriologiaRESUMO
The emerging growth of nanotechnology has attracted great attention due to its application in the parasite and intermediate host control. However, the knowledge concerning the mechanism of action (MoA) and toxicity of nanomaterials (NMs) to snails remain unclear. In this context, the present study revised the historical use of snails as experimental models in nanotoxicological studies and summarized the MoA and toxicity of NMs in aquatic and land snails. The data concerning the bioaccumulation, reproductive and transgenerational toxicity, embryotoxicity, genotoxicity and potential molluscicidal activity of NMs were revised. Furthermore, the data about the experimental conditions, such as exposure time, concentrations, cell and tissue-specific responses, snail species and nanoparticle types are discussed. Revised data showed that the toxic effects of NMs were reported for 21 snail species with medical, veterinary and ecological importance. The NM toxicity to snails is dependent on the physical and chemical properties of NMs, as well as their environmental transformation and experimental design. The NM bioaccumulation on snails was related to several toxic effects, such as reactive oxygen species (ROS) production, oxidative stress, following by oxidative damage to DNA, lipids and proteins. The NM metabolism in snails remains unknown. Results showed the potential use of NMs in the snail control program. Also, significant research gaps and recommendations for future researches are indicated. The present study confirms that snails are suitable invertebrate model system to assess the nanotoxicity.
Assuntos
Nanoestruturas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Dano ao DNA , Moluscocidas , Nanoestruturas/química , Nanotecnologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Silver nanoparticles (Ag NPs) have been applied in several commercial products due to their antimicrobial properties, while their molluscicide properties, mode of action and toxicity to snail species remain unclear. In this study, the comparative toxicity of polyvinylpyrrolidone (PVP)-functionalized Ag NPs and their dissolved counterpart (Ag ions) was analyzed during the early developmental stages of the freshwater snail Biomphalaria glabrata, intermediate host of Schistosoma mansoni. Ag NPs were synthesized and characterized by multiple techniques, and the snail embryotoxicity was analyzed in terms of mortality, hatching, developmental stages and morphological alterations, while the acute toxicity to newly-hatched snails was analyzed by mortality and behavioral impairments. Results showed that both Ag forms induced mortality, hatching delay and morphological alterations (especially hydropic abnormalities) in snail embryos in a concentration and exposure time dependent patterns. Ag NPs showed low embryotoxic effects and similar toxicity for newly-hatched snails when compared to their dissolved counterparts, indicating that the nanotoxicity was dependent of snail developmental stages. The knowledge about the Ag NP toxicity to different early development stages of B. glabrata contributes to its potential use as molluscicide and control of neglected tropical diseases, including schistosomiasis.
Assuntos
Biomphalaria/efeitos dos fármacos , Nanopartículas Metálicas/química , Moluscocidas/farmacologia , Povidona/química , Prata/farmacologia , Animais , Moluscocidas/química , Prata/químicaRESUMO
Effluent from wastewater treatment plants (WWTPs) remains one of the major pollutants of aquatic environments; however, knowledge about its ecotoxic effects at fish early life stages is limited. The ecotoxicity of effluent from Brazilian WWTPs was herein analyzed based on responses of multiple biomarkers in the zebrafish embryotoxicity test (ZET). Ecotoxicity was analyzed based on mortality rate, hatching rate, spontaneous movement rate (neurotoxicity), heart rate (cardiotoxicity), frequency of morphological changes and morphometric parameters during 144 h exposure time. Results showed that embryos exposed to affluent and effluent presented high mortality rate and delayed hatching rate, as well as changes in morphometric parameters. Exposed embryos also showed physiological, sensory, skeletal and muscular changes, which confirms that the ecotoxic effect of WWTPs effluent is systemic and associated with the presence of several pollutants, even at low concentrations (mixture toxicity). The present study is pioneer in using responses of multiple biomarkers in ZET as suitable approach to assess the ecotoxicity of WWTPs effluent in developing countries, as well as to add value and contribute to studies on WWTPs worldwide. Zebrafish is a suitable vertebrate model to assess the ecotoxicity of WWTP effluent.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Biomarcadores , Brasil , Peixe-ZebraRESUMO
Glyphosate-based herbicides are widely used in agricultural systems. Although the target organism are particularly plant organisms, there are numerous studies showing adverse effects in aquatic animals, such as inhibition of acetyl cholinesterase, effects on kidney, liver, and gill and stressors effects. This study analyzed the effects of commercial formulation of glyphosate on feeding behavior in Pacu (Piaractus mesopotamicus). Fish were exposed to three glyphosate concentrations (0.2, 0.6, and 1.8 ppm) for 15 days. At concentrations of 0.2 and 0.6 ppm, food intake decreased on day 13 and then returned to normal on day 15. At the highest glyphosate-based herbicide concentration, 1.8 ppm, food consumption decreased dramatically and did not recover on day 15. This study showed that glyphosate-based herbicide at sub-lethal concentrations can affect feed intake in pacu and consequently inhibits its growth.