Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 57(3): 1570-1593, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31797328

RESUMO

Perturbations in insulin/IGF signaling and manganese (Mn2+) uptake and signaling have been separately reported in Huntington's disease (HD) models. Insulin/IGF supplementation ameliorates HD phenotypes via upregulation of AKT, a known Mn2+-responsive kinase. Limited evidence both in vivo and in purified biochemical systems suggest Mn2+ enhances insulin/IGF receptor (IR/IGFR), an upstream tyrosine kinase of AKT. Conversely, Mn2+ deficiency impairs insulin release and associated glucose tolerance in vivo. Here, we test the hypothesis that Mn2+-dependent AKT signaling is predominantly mediated by direct Mn2+ activation of the insulin/IGF receptors, and HD-related impairments in insulin/IGF signaling are due to HD genotype-associated deficits in Mn2+ bioavailability. We examined the combined effects of IGF-1 and/or Mn2+ treatments on AKT signaling in multiple HD cellular models. Mn2+ treatment potentiates p-IGFR/IR-dependent AKT phosphorylation under physiological (1 nM) or saturating (10 nM) concentrations of IGF-1 directly at the level of intracellular activation of IGFR/IR. Using a multi-pharmacological approach, we find that > 70-80% of Mn2+-associated AKT signaling across rodent and human neuronal cell models is specifically dependent on IR/IGFR, versus other signaling pathways upstream of AKT activation. Mn2+-induced p-IGFR and p-AKT were diminished in HD cell models, and, consistent with our hypothesis, were rescued by co-treatment of Mn2+ and IGF-1. Lastly, Mn2+-induced IGF signaling can modulate HD-relevant biological processes, as the reduced glucose uptake in HD STHdh cells was partially reversed by Mn2+ supplementation. Our data demonstrate that Mn2+ supplementation increases peak IGFR/IR-induced p-AKT likely via direct effects on IGFR/IR, consistent with its role as a cofactor, and suggests reduced Mn2+ bioavailability contributes to impaired IGF signaling and glucose uptake in HD models.


Assuntos
Doença de Huntington/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Animais , Transporte Biológico/fisiologia , Glucose/metabolismo , Doença de Huntington/genética , Fosforilação , Ratos , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/fisiologia
2.
Pharmacol Biochem Behav ; 173: 44-50, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125592

RESUMO

Agmatine is a neuromodulator that has been proposed as a therapeutic strategy for the treatment of major depressive disorder (MDD). A previous study reported that agmatine caused a fast-acting effect in mice subjected to chronic mild stress without causing changes in the levels of synaptic proteins in the prefrontal cortex. We examined whether a single administration of agmatine is able to counteract the depressive-like behavior induced by chronic administration of corticosterone, a pharmacological model of stress, paralleled with the modulation of synaptic protein levels in the prefrontal cortex and hippocampus. Female mice received corticosterone (20 mg/kg, p.o.) for 21 days and, in the last day of treatment, were administered with a single dose of agmatine (0.1 mg/kg, p.o.), fluoxetine (10 mg/kg, p.o.; control for a conventional antidepressant) or ketamine (1 mg/kg, i.p.; control for a fast-acting antidepressant). Agmatine, similar to ketamine, reversed the depressive-like behavior induced by corticosterone in the tail suspension test (TST), an effect that was not observed in mice treated with fluoxetine. The immunocontent of GluA1 was increased by all the treatments in the hippocampus of control mice, whereas PSD95 was not significantly altered by treatments in any brain structure. Although the levels of synaptic proteins do not seem to account for the behavioral findings reported here, the present study provides clear evidence for the fast-acting antidepressant profile of agmatine in the TST, similar to ketamine.


Assuntos
Agmatina/administração & dosagem , Antidepressivos/farmacologia , Corticosterona/farmacologia , Depressão/induzido quimicamente , Depressão/prevenção & controle , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fluoxetina/farmacologia , Ketamina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Camundongos , Receptores de AMPA/metabolismo
3.
Pharmacol Biochem Behav ; 150-151: 108-114, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27743829

RESUMO

Agmatine is an endogenous neuromodulator that has been shown to have antidepressant-like properties. We have previously demonstrated that it can induce a rapid increase in BDNF levels after acute administration, suggesting that agmatine may be a fast-acting antidepressant. To investigate this hypothesis, the present study evaluated the effects of a single administration of agmatine in mice subjected to chronic unpredictable stress (CUS), a model of depression responsive only to chronic treatment with conventional antidepressants. The ability of agmatine to reverse CUS-induced behavioral and biochemical alterations was evaluated and compared with those elicited by the fast-acting antidepressant (ketamine) and the conventional antidepressant (fluoxetine). After exposed to CUS for 14days, mice received a single oral dose of agmatine (0.1mg/kg), ketamine (1mg/kg) or fluoxetine (10mg/kg), and were submitted to behavioral evaluation after 24h. The exposure to CUS caused an increased immobility time in the tail suspension test (TST) but did not change anhedonic-related parameters in the splash test. Our findings provided evidence that, similarly to ketamine, agmatine is able to reverse CUS-induced depressive-like behavior in the TST. Western blot analyses of prefrontal cortex (PFC) demonstrated that mice exposed to CUS and/or treated with agmatine, fluoxetine or ketamine did not present alterations in the immunocontent of synaptic proteins [i.e. GluA1, postsynaptic density protein 95 (PSD-95) and synapsin]. Altogether, our findings indicate that a single administration of agmatine is able to reverse behavioral alterations induced by CUS in the TST, suggesting that this compound may have fast-acting antidepressant-like properties. However, there was no alteration in the levels of synaptic proteins in the PFC, a result that need to be further investigated in other time points.


Assuntos
Agmatina/farmacologia , Antidepressivos/farmacologia , Transtorno Depressivo/tratamento farmacológico , Ketamina/farmacologia , Estresse Psicológico/complicações , Animais , Feminino , Elevação dos Membros Posteriores , Camundongos , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/química
4.
Metallomics ; 8(6): 597-604, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26790482

RESUMO

Manganese (Mn) is an essential trace element required for a range of physiological processes, but Mn can also be neurotoxic especially during development. Excess levels of Mn accumulate preferentially in the striatum and can induce a syndrome called manganism, characterized by an initial stage of psychiatric disorder followed by motor impairment. In the present study, we investigated the effects of Mn exposure on the developing dopaminergic system, specifically tyrosine hydroxylase (TH) protein and phosphorylation levels in the striatum of rats. Neonatal rats were exposed to Mn intraperitoneally (ip) from post-natal day 8 up to day 12 (PND8-12). Striatal tissue was analysed on PND14 or PND70, to detect either short-term or long-term effects induced by Mn exposure. There was a dose dependent increase in TH protein levels in the striatum at PND14, reaching significance at 20 mg kg(-1) Mn, and this correlated with an increase in TH phosphorylation at serines 40, 31 and 19. However, in the striatum at PND70, a time by which Mn levels were no longer elevated, there was a dose dependent decrease in TH protein levels, reaching significance at 20 mg kg(-1) Mn, and this correlated with TH phosphorylation at Ser40 and Ser19. There was however a significant increase in phosphorylation of TH at serine 31 at 20 mg kg(-1) Mn, which did not correlate with TH protein levels. Taken together our findings suggest that neonatal Mn exposure can have both short-term and long-term effects on the regulation of TH in the striatal dopaminergic system.


Assuntos
Corpo Estriado/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Manganês/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Animais Recém-Nascidos , Corpo Estriado/efeitos dos fármacos , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/genética
5.
Neurotoxicology ; 50: 28-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26215118

RESUMO

Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Deficiências do Desenvolvimento/induzido quimicamente , Manganês/toxicidade , Transtornos dos Movimentos/etiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Discriminação Psicológica/efeitos dos fármacos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Masculino , Transtornos da Percepção/induzido quimicamente , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Olfato/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-25600102

RESUMO

Considering that intracellular signaling pathways that modulate brain BDNF are implicated in antidepressant responses, this study investigated whether signaling pathway inhibitors upstream to BDNF might influence the antidepressant-like effect of zinc, a metal that has been shown to display antidepressant properties. To this end, the influence of i.c.v. administration of H-89 (1µg/site, PKA inhibitor), KN-62 (1µg/site, CAMKII inhibitor), chelerythrine (1µg/site, PKC inhibitor), PD98059 (5µg/site, MEK1/2 inhibitor), U0126 (5µg/site, MEK1/2 inhibitor), LY294002 (10nmol/site, PI3K inhibitor) on the reduction of immobility time in the tail suspension test (TST) elicited by ZnCl2 (10mg/kg, p.o.) was investigated. Moreover, the effect of the combination of sub-effective doses of ZnCl2 (1mg/kg, p.o.) and AR-A014418 (0.001µg/site, GSK-3ß inhibitor) was evaluated. The occurrence of changes in CREB phosphorylation and BDNF immunocontent in the hippocampus and prefrontal cortex of mice following ZnCl2 treatment was also investigated. The anti-immobility effect of ZnCl2 in the TST was prevented by treatment with PKA, PKC, CAMKII, MEK1/2 or PI3K inhibitors. Furthermore, ZnCl2 in combination with AR-A014418 caused a synergistic anti-immobility effect in the TST. None of the treatments altered locomotor activity of mice. ZnCl2 treatment caused no alteration in CREB phosphorylation and BDNF immunocontent. The results extend literature data regarding the mechanisms underlying the antidepressant-like action of zinc by indicating that its antidepressant-like effect may be dependent on the activation of PKA, CAMKII, PKC, ERK, and PI3K/GSK-3ß pathways. However, zinc is not able to acutely increase BDNF in the hippocampus and prefrontal cortex.


Assuntos
Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cloretos/uso terapêutico , Depressão/tratamento farmacológico , Transdução de Sinais/fisiologia , Compostos de Zinco/uso terapêutico , Animais , Antidepressivos/farmacologia , Proteína de Ligação a CREB/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cloretos/farmacologia , Depressão/patologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Feminino , Elevação dos Membros Posteriores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estatísticas não Paramétricas , Compostos de Zinco/farmacologia
7.
Neurochem Int ; 62(6): 836-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23454192

RESUMO

The excitotoxicity induced by excessive activation of the glutamatergic neurotransmission pathway is involved in several neuropathologies. In this sense, molecules that prevent the release of glutamate or the excessive activation of its receptors can be useful in preventing the neuronal cell death observed in these diseases. Lectins are proteins capable of reversible binding to the carbohydrates in glycoconjugates, and some have been used in the study and purification of glutamate receptors. ConBr is a mannose/glucose-binding lectin purified from Canavalia brasiliensis seeds. In the present study, we aimed to evaluate the neuroprotective activity of ConBr against glutamate-induced excitotoxicity. Hippocampal slices were isolated from adult male mice and incubated for 6h in Krebs saline/DMEM buffer alone (control), in the presence of glutamate or glutamate plus ConBr. The phosphorylation of Akt and mitogen activated protein kinases (MAPKs) such as ERK1/2, p38(MAPK) and JNK1/2/3 was evaluated with western blotting. The results indicate that glutamate provoked a reduction in the hippocampal slice viability (-25%), diminished the phosphorylation of Akt and augmented p38(MAPK) and ERK1 phosphorylation. No changes were observed in the phosphorylation of JNK1/2/3 or ERK2. Notably, ConBr, through a mechanism dependent on carbohydrate interaction, prevented the reduction of cell viability and Akt phosphorylation induced by glutamate. Furthermore, in the presence of the PI3K inhibitor LY294002, ConBr was unable to reverse glutamate neurotoxicity. Taken together, our data suggest that the neuroprotective effect of ConBr against glutamate neurotoxicity requires oligosaccharide interaction and is dependent on the PI3K/Akt pathway.


Assuntos
Canavalia/química , Antagonistas de Aminoácidos Excitatórios , Ácido Glutâmico/toxicidade , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores , Proteína Oncogênica v-akt/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Lectinas de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Metabolismo dos Carboidratos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Hipocampo/patologia , Técnicas In Vitro , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Morfolinas/farmacologia , Fosforilação , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Sais de Tetrazólio , Tiazóis
8.
Arch Toxicol ; 87(7): 1231-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23385959

RESUMO

While manganese (Mn) is essential for proper central nervous system (CNS) development, excessive Mn exposure may lead to neurotoxicity. Mn preferentially accumulates in the basal ganglia, and in adults it may cause Parkinson's disease-like disorder. Compared to adults, younger individuals accumulate greater Mn levels in the CNS and are more vulnerable to its toxicity. Moreover, the mechanisms mediating developmental Mn-induced neurotoxicity are not completely understood. The present study investigated the developmental neurotoxicity elicited by Mn exposure (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 to PN27 in rats. Neurochemical analyses were carried out on PN29, with a particular focus on striatal alterations in intracellular signaling pathways (MAPKs, Akt and DARPP-32), oxidative stress generation and cell death. Motor alterations were evaluated later in life at 3, 4 or 5 weeks of age. Mn exposure (20 mg/kg) increased p38(MAPK) and Akt phosphorylation, but decreased DARPP-32-Thr-34 phosphorylation. Mn (10 and 20 mg/kg) increased caspase activity and F2-isoprostane production (a biological marker of lipid peroxidation). Paralleling the changes in striatal biochemical parameters, Mn (20 mg/kg) also caused motor impairment, evidenced by increased falling latency in the rotarod test, decreased distance traveled and motor speed in the open-field test. Notably, the antioxidant Trolox™ reversed the Mn (20 mg/kg)-dependent augmentation in p38(MAPK) phosphorylation and reduced the Mn (20 mg/kg)-induced caspase activity and F2-isoprostane production. Trolox™ also reversed the Mn-induced motor coordination deficits. These findings are the first to show that long-term exposure to Mn during a critical period of neurodevelopment causes motor coordination dysfunction with parallel increment in oxidative stress markers, p38(MAPK) phosphorylation and caspase activity in the striatum. Moreover, we establish Trolox™ as a potential neuroprotective agent given its efficacy in reversing the Mn-induced neurodevelopmental effects.


Assuntos
Antioxidantes/farmacologia , Gânglios da Base/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Cromanos/farmacologia , Intoxicação por Manganês/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Gânglios da Base/metabolismo , Gânglios da Base/fisiopatologia , Caspases/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Masculino , Intoxicação por Manganês/etiologia , Intoxicação por Manganês/metabolismo , Intoxicação por Manganês/fisiopatologia , Intoxicação por Manganês/psicologia , Fosforilação , Ratos , Ratos Wistar , Teste de Desempenho do Rota-Rod , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
PLoS One ; 7(3): e33057, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427945

RESUMO

Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3(rd), 4(th) and 5(th) week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress.


Assuntos
Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Exposição Ambiental , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Manganês/toxicidade , Desempenho Psicomotor/efeitos dos fármacos , Análise de Variância , Animais , Gânglios da Base/crescimento & desenvolvimento , Western Blotting , Caspases/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA