Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 38(2): 213-221, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31978253

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has generated scientific interest because of its prevalence in the population. Studies indicate that physical exercise promotes neuroplasticity and improves cognitive function in animal models and in human beings. The aim of the present study was to investigate the effects of strength exercise on the hippocampal protein contents and memory performance in mice subjected to a model of sporadic AD induced by streptozotocin (STZ). Swiss mice received two injections of STZ (3 mg/kg, intracerebroventricular). After 21 days, they began physical training using a ladde. Mice performed this protocol for 4 weeks. After the last exercise training session, mice performed the Morris Water Maze test. The samples of hippocampus were excised and used to determine protein contents of brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase-Ca2+ (ERK), calmodulin-dependent protein kinase (CAMKII) and cAMP-response element-binding protein (CREB) signalling pathway. Strength exercise was effective against the decrease in the time spent and distance travelled in the target quadrant by STZ-injected mice. Strength exercise was also effective against the reduction of mature BDNF, tropomyosin receptor kinase B and neuronal nuclear antigen (NeuN) hippocampal protein levels in STZ mice. The decrease in the hippocampal ratio of pERK/ERK, pCAMKII/CAMKII and pCREB/CREB induced by STZ was reversed by strength exercise. Strength exercise decreased Bax/Bcl2 ratio in the hippocampus of STZ-injected mice. The present study demonstrates that strength exercise modulated the hippocampal BDNF/ERK-CAMKII/CREB signalling pathway and suppressed STZ-induced spatial memory impairment in mice.


Assuntos
Hipocampo/metabolismo , Condicionamento Físico Animal , Transdução de Sinais , Memória Espacial , Animais , Apoptose , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Aprendizagem em Labirinto , Memória , Camundongos , Estreptozocina
2.
Eur J Pharmacol ; 725: 79-86, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24440690

RESUMO

This study investigated the antinociceptive action of p-chloro-selenosteroid (PCS), administered by intragastric route (i.g.) to mice against acute models. The contribution of adenosinergic, dopaminergic, serotonergic, nitric oxide and opioid systems was investigated. It was evaluated if the administration of PCS triggers toxic effect. Treatment with PCS (10mg/kg) reduced writhing induced by acetic acid and its effect lasts up to 48 h after treatment. The compound caused an inhibition in neurogenic and inflammatory phases of nociception and in paw edema induced by formalin. The licking behavior triggered by glutamate was reduced by PCS. In the tail-immersion test, PCS elicited an increase in delta latency response. Pretreatment with caffeine (3mg/kg, intraperitoneally [i.p.]) and SCH58261 (3mg/kg, i.p.), antagonist at adenosinergic receptors, SCH23390 (0.05 mg/kg, i.p.) and sulpiride (5mg/kg, i.p.), antagonist at dopaminergic receptors, caused a reduction in the antinociceptive action of PCS in the glutamate test. By contrast, pretreatment with WAY100635 (0.7 mg/kg, i.p.), ketanserin (0.3mg/kg, i.p.), ondasentron (0.5mg/kg, i.p.), l-arginine (600 mg/kg, i.p.) and naloxone (1mg/kg, subcutaneous [s.c.]) did not abolish the antinociceptive effect caused by PCS (10mg/kg, i.g.) administration. The animals treated with PCS did not show alterations in locomotor and exploratory activities, in biochemical parameters evaluated, food and water consumption, as well as in the body weight. These results clearly showed the antinociceptive action of PCS in different animal models without causing acute toxic effects in mice. Adenosinergic and dopaminergic systems seem to be related to the mechanisms by which PCS elicits antinociception.


Assuntos
Adenosina/metabolismo , Analgésicos/farmacologia , Colesterol/análogos & derivados , Dopamina/metabolismo , Nociceptividade/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Analgésicos/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Colesterol/administração & dosagem , Colesterol/farmacologia , Edema/induzido quimicamente , Edema/metabolismo , Feminino , Ácido Glutâmico/efeitos adversos , Camundongos , Óxido Nítrico/metabolismo , Compostos Organosselênicos/administração & dosagem , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...