Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cosmet Dermatol ; 22(11): 2964-2970, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37712576

RESUMO

BACKGROUND: The safety rationale behind the constant needle motion injection technique is based on the assumption that due to the constant needle motion and simultaneous soft tissue filler material administration a smaller amount of product per area may be injected into an artery if an artery within the range of the moving needle is inadvertently entered. OBJECTIVE: To perform mathematical calculations for determining the probability for causing intra-arterial product administration when constantly moving the needle during facial aesthetic soft tissue filler injections. METHODS: This study was designed as a theoretical investigation into the probabilities for causing adverse events due to intravascular injection of soft tissue filler material when constantly moving a 27-G needle during facial soft tissue filler administration. RESULTS: It was revealed that with a higher number of conducted injection passes a greater soft tissue area can be covered by the needle. The odds of encountering an artery within the covered soft tissue volume and the odds of injecting any volume greater than zero into the arterial blood stream increases with the number of performed injection passes. This increase is greatest between 1 and 10 performed injection passes. CONCLUSION: This model demonstrates that the constant needle motion technique increases the probability of encountering an artery within the treatment area and thus increases the odds for intra-arterial product administration. The constant needle motion technique does not increase safety but rather may increase the odds of causing intra-arterial product administration with the respective adverse consequences for the patient.

2.
Methods Mol Biol ; 2478: 609-650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36063336

RESUMO

Optical trapping has been instrumental for deciphering translocation mechanisms of the force-generating cytoskeletal proteins. However, studies of the dynamic interactions between microtubules (MTs) and MT-associated proteins (MAPs) with no motor activity are lagging. Investigating the motility of MAPs that can diffuse along MT walls is a particular challenge for optical-trapping assays because thermally driven motions rely on weak and highly transient interactions. Three-bead, ultrafast force-clamp (UFFC) spectroscopy has the potential to resolve static and diffusive translocations of different MAPs with sub-millisecond temporal resolution and sub-nanometer spatial precision. In this report, we present detailed procedures for implementing UFFC, including setup of the optical instrument and feedback control, immobilization and functionalization of pedestal beads, and preparation of MT dumbbells. Example results for strong static interactions were generated using the Kinesin-7 motor CENP-E in the presence of AMP-PNP. Time resolution for MAP-MT interactions in the UFFC assay is limited by the MT dumbbell relaxation time, which is significantly longer than reported for analogous experiments using actin filaments. UFFC, however, provides a unique opportunity for quantitative studies on MAPs that glide along MTs under a dragging force, as illustrated using the kinetochore-associated Ska complex.


Assuntos
Proteínas de Transporte , Proteínas dos Microtúbulos , Proteínas de Transporte/metabolismo , Cinetocoros/metabolismo , Proteínas dos Microtúbulos/análise , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...