Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 10811-10820, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37988557

RESUMO

Redox-responsive drug delivery systems present a promising avenue for drug delivery due to their ability to leverage the unique redox environment within tumor cells. In this work, we describe a facile and cost-effective one-pot synthesis method for a redox-responsive delivery system based on novel trithiocyanuric acid (TTCA) nanoparticles (NPs). We conduct a thorough investigation of the impact of various synthesis parameters on the morphology, stability, and loading capacity of these NPs. The great drug delivery potential of the system is further demonstrated in vitro and in vivo by using doxorubicin as a model drug. The developed TTCA-PEG NPs show great drug delivery efficiency with minimal toxicity on their own both in vivo and in vitro. The simplicity of this synthesis, along with the promising characteristics of TTCA-PEG NPs, paves the way for new opportunities in the further development of redox-responsive drug delivery systems based on TTCA.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina/uso terapêutico , Oxirredução , Portadores de Fármacos
2.
ACS Biomater Sci Eng ; 6(3): 1487-1499, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33455386

RESUMO

In this study, hybrid composites based on ß-alloy Ti-xNb and oxide nanotubes (NTs) have been successfully prepared. NTs of different sizes were grown on Ti-Nb substrates with different Nb contents (5, 25, and 50 wt %) via electrochemical anodization at 30 and 60 V. Scanning electron microscopy imaging revealed that vertically aligned nanotubular structures form on the surface of Ti-Nb alloy substrates and influence Nb content in alloys based on NT length. X-ray diffraction analysis confirmed the formation of the anodized TiO2 layer and revealed several phases as the Nb content increased, starting with α' for low Nb content (5 wt %), the martensite α″ for intermediate Nb content (25 wt %), and the ß phase for the highest Nb content (50 wt %). Nanoindentation testing was used to evaluate the changes in mechanical properties of oxide NTs grown on Ti-Nb alloys with different compositions. NT arrays showed wide variations in Young's modulus and hardness depending upon the anodization voltage and the Nb content. The hardness and Young's modulus strongly correlated with NT morphology and structure. The highly dense morphology formed at a lower anodization voltage results in increased elastic modulus and hardness values compared with the surfaces prepared at higher anodization voltages. The nanostructurization of Ti-Nb surface substrates favored improved surface properties for the enhanced adhesion and proliferation of human mesenchymal stem cells (hMSCs). In vitro adhesion, spreading, and proliferation of hMSCs revealed the improved surface properties of the NTs prepared at an anodization voltage of 30 V compared with the NTs prepared at 60 V. Thus it can be concluded that NTs with diameters of ∼50 nm (at 30 V) are more favorable for cell adhesion and growth compared with NTs with diameters of 80 ± 20 nm (at 60 V). The surfaces of Ti-25Nb substrates anodized at 30 V promoted enhanced cell growth, as the further increase in Nb content in Ti-Nb substrate (Ti-50Nb) led to reduced cell proliferation. The application of NTs on Ti-Nb substrates leads to significant reductions in mechanical properties compared with those on the Ti-Nb alloy and improves cell adhesion and proliferation, which is vitally important for successful application in regenerative medicine.


Assuntos
Nanotubos , Titânio , Ligas , Técnicas de Cultura de Células , Humanos , Nióbio
3.
ACS Appl Mater Interfaces ; 10(41): 34849-34868, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30230807

RESUMO

The incorporation of bioactive compounds onto polymer fibrous scaffolds with further control of drug release kinetics is essential to improve the functionality of scaffolds for personalized drug therapy and regenerative medicine. In this study, polymer and hybrid microcapsules were prepared and used as drug carriers, which are further deposited onto polymer microfiber scaffolds [polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and PHB doping with the conductive polyaniline (PANi) of 2 wt % (PHB-PANi)]. The number of immobilized microcapsules decreased with increase in their ζ-potential due to electrostatic repulsion with the negatively charged fiber surface, depending on the polymer used for the scaffold's fabrication. Additionally, the immobilization of the capsules in dynamic mechanical conditions at a frequency of 10 Hz resulted in an increase in the number of the capsules on the fibers with increase in the scaffold piezoelectric response in the order PCL < PHB < PHB-PANi, depending on the chemical composition of the capsules. The immobilization of microcapsules loaded with different bioactive molecules onto the scaffold surface enabled multimodal triggering by physical (ultrasound, laser radiation) and biological (enzymatic treatment) stimuli, providing controllable release of the cargo from scaffolds. Importantly, the microcapsules immobilized onto the surface of the scaffolds did not influence the cell growth, viability, and cell proliferation on the scaffolds. Moreover, the attachment of human mesenchymal stem cells (hMSCs) on the scaffolds revealed that the PHB and PHB-PANi scaffolds promoted adhesion of hMSCs compared to that of the PCL scaffolds. Two bioactive compounds, antibiotic ceftriaxone sodium (CS) and osteogenic factor dexamethasone (DEXA), were chosen to load the microcapsules and demonstrate the antimicrobial properties and osteogenesis of the scaffolds. The modified scaffolds had prolonged release of CS or DEXA, which provided an improved antimicrobial effect, as well as enhanced osteogenic differentiation and mineralization of the scaffolds modified with capsules compared to that of individual scaffolds soaked in CS solution or incubated in an osteogenic medium. Thus, the immobilization of microcapsules provides a simple, convenient way to incorporate bioactive compounds onto polymer scaffolds, which makes these multimodal materials suitable for personalized drug therapy and bone tissue engineering.


Assuntos
Antibacterianos , Ceftriaxona , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Antibacterianos/química , Antibacterianos/farmacologia , Cápsulas , Ceftriaxona/química , Ceftriaxona/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Poliésteres/farmacologia , Proibitinas
4.
Mater Sci Eng C Mater Biol Appl ; 64: 20-28, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27127024

RESUMO

Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe2O3 nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe2O3 nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42±0.21 and 2.34±0.14mg/g respectively. The maximum drug release of molsidomine is achieved at pH1.6 (approximately 71-75% release at 37°C), whereas at pH7.4 drug release is lower (50.4-59.6% release at 37°C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field.


Assuntos
Materiais Revestidos Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Compostos Férricos/química , Campos Magnéticos , Molsidomina , Nanopartículas/química , Molsidomina/química , Molsidomina/farmacocinética , Nanopartículas/ultraestrutura , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA