Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(37): 33332-33341, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744852

RESUMO

Offshore hydrogen production through water electrolysis presents significant technical and economic challenges. Achieving an efficient hydrogen evolution reaction (HER) in alkaline and natural seawater environments remains daunting due to the sluggish kinetics of water dissociation. To address this issue, we synthesized electrocatalytic WO3-x@CdS1-x nanocomposites (WCSNCs) using ultrasonic-assisted laser irradiation. The synthesized WCSNCs with varying CdS contents were thoroughly characterized to investigate their structural, morphological, and electrochemical properties. Among the samples tested, the WCSNCs with 20 wt % CdS1-x in WO3-x (Wx@Sx-20%) exhibited superior electrocatalytic performance for hydrogen evolution in a 1 M KOH solution. Specifically, the Wx@Sx-20% catalyst demonstrated an overpotential of 0.191 V at a current density of -10 mA/cm2 and a Tafel slope of 61.9 mV/dec. The Wx@Sx-20% catalysts demonstrated outstanding stability and durability, maintaining their performance after 24 h and up to 1000 CV cycles. Notably, when subjected to natural seawater electrolysis, the Wx@Sx-20% catalysts outperformed in terms of electrocatalytic HER activity and stability. The remarkable performance enhancement of the prepared electrocatalyst can be attributed to the combined effect of sulfur vacancies in CdS1-x and oxygen vacancies in WO3-x. These vacancies promote the electrochemically active surface area, enhance the rate of charge separation and transfer, increase the number of electrocatalytic active sites, and accelerate the HER process in alkaline and natural seawater environments.

2.
ACS Omega ; 8(29): 26391-26404, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521636

RESUMO

Laser-induced breakdown spectroscopy (LIBS) is a remarkable elemental identification and quantification technique used in multiple sectors, including science, engineering, and medicine. Machine learning techniques have recently sparked widespread interest in the development of calibration-free LIBS due to their ability to generate a defined pattern for complex systems. In geotechnical engineering, understanding soil mechanics in relation to the applications is of paramount importance. The knowledge of soil unconfined compressive strength (UCS) enables engineers to identify the behaviors of a particular soil and propose effective solutions to given geotechnical problems. However, the experimental techniques involved in the measurements of soil UCS are incredibly expensive and time-consuming. In this work, we develop a pioneering technique to estimate the soil unconfined compressive strength using artificial intelligent methods based on the spectra obtained from the LIBS system. Decision tree regression (DTR) and support vector regression learners were initially employed, and consequently, the adaptive boosting method was applied to improve the performance of the two single learners. The prediction power of the established models was determined using the standard performance evaluation metrics such as the root-mean-square error, CC between the predicted and actual soil UCS values, mean absolute error, and R2 score. Our results revealed that the boosted DTR exhibited the highest coefficient of correlation of 99.52% and an R2 value of 99.03% during the testing phase. To validate the models, the UCS values of soils stabilized with lime and cement were predicted with an optimum degree of accuracy, confirming the models' suitability and generalization strength for soil UCS investigations.

3.
ACS Omega ; 8(24): 21653-21663, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360487

RESUMO

Biomass-derived activated carbons have gained significant attention as electrode materials for supercapacitors (SCs) due to their renewability, low-cost, and ready availability. In this work, we have derived physically activated carbon from date seed biomass as symmetric electrodes and PVA/KOH has been used as a gel polymer electrolyte for all-solid-state SCs. Initially, the date seed biomass was carbonized at 600 °C (C-600) and then it was used to obtain physically activated carbon through CO2 activation at 850 °C (C-850). The SEM and TEM images of C-850 displayed its porous, flaky, and multilayer type morphologies. The fabricated electrodes from C-850 with PVA/KOH electrolytes showed the best electrochemical performances in SCs (Lu et al. Energy Environ. Sci., 2014, 7, 2160) application. Cyclic voltammetry was performed from 5 to 100 mV s-1, illustrating an electric double layer behavior. The C-850 electrode delivered a specific capacitance of 138.12 F g-1 at 5 mV s-1, whereas it retained 16 F g-1 capacitance at 100 mV s-1. Our assembled all-solid-state SCs exhibit an energy density of 9.6 Wh kg-1 with a power density of 87.86 W kg-1. The internal and charge transfer resistances of the assembled SCs were 0.54 and 17.86 Ω, respectively. These innovative findings provide a universal and KOH-free activation process for the synthesis of physically activated carbon for all solid-state SCs applications.

4.
Nanomaterials (Basel) ; 11(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578779

RESUMO

In this study, the samples of the ZnFe2O4 (ZFO) spinel ferrites nanoparticles (SFNPs), Co0.5Ni0.5Ga0.01Gd0.01Fe1.98O4 (CNGaGdFO) SFNPs and (Co0.5Ni0.5Ga0.01Gd0.01Fe1.98O4)x/(ZnFe2O4)y (x:y = 1:1, 1:2, 1:3, 2:1, 3:1 and 4:1) (CNGaGdFO)x/(ZFO)y spinel ferrite nanocomposites (NC) have been synthesized by both sol-gel and Green pulsed laser ablation in liquid (PLAL) approaches. All products were characterized by X-ray powder diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM), elemental mappings and energy dispersive X-ray spectroscopy (EDX). It was objected to tune the magnetic properties of a soft spinel ferrite material with a softer one by mixing them with different fractions. Some key findings are as follows. M-H investigations revealed the exhibition of ferrimagnetic phases for all synthesized samples (except ZnFe2O4) that were synthesized by sol-gel or PLAL methods at both 300 K and 10 K. ZnFe2O4 ferrite NPs exhibits almost paramagnetic feature at 300 K and glass-like phase at very low temperatures below 19.23 K. At RT analyses, maximum saturation magnetization (MS) of 66.53 emu/g belongs to nanocomposite samples that was synthesized by sol-gel method and x:y ratio of 1:3. At 10 K analyses, MS,max = 118.71 emu/g belongs to same nanocomposite samples with ratio of 1:3. Maximum coercivities are 625 Oe belonging to CNGaGdFO and 3564 Oe belonging to NC sample that was obtained by sol-gel route having the 3:1 ratio. Squareness ratio (SQRs = Mr/MS) of NC sample (sol-gel, 4:1 ratio) is 0.371 as maximum and other samples have much lower values until a minimum of 0.121 (laser, 3:1) assign the multi-domain wall structure for all samples at 300 K. At 10 K data, just CNGaGdFO has 0.495 SQR value assigning single domain nature. The maximum values of effective crystal anisotropy constant (Keff) are 5.92 × 104 Erg/g and 2.4 × 105 Erg/g belonging to CNGaGdFO at 300 K and 10 K, respectively. Further, this sample has an internal anisotropy field Ha of 1953 Oe as largest at 300 K. At 10 K another sample (sol-gel, 3:1 ratio) has Ha,max of 11138 Oe which can also be classified as a soft magnetic material similar to other samples. Briefly, most magnetic parameters of NCs that were synthesized by sol-gel route are stronger than magnetic parameters of the NCs that were synthesized by PLAL at both temperatures. Some NC samples were observed to have stronger magnetic data as compared to magnetic parameters of Co0.5Ni0.5Ga0.01Gd0.01Fe1.98O4 NPs at 10 K.

5.
Nanomaterials (Basel) ; 10(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217915

RESUMO

Transparent and amorphous yttrium (Y)/Sialon thin films were successfully fabricated using pulsed laser deposition (PLD). The thin films were fabricated in three steps. First, Y/Sialon target was synthesized using spark plasma sintering technique at 1500 °C in an inert atmosphere. Second, the surface of the fabricated target was cleaned by grinding and polishing to remove any contamination, such as graphite and characterized. Finally, thin films were grown using PLD in an inert atmosphere at various substrate temperatures (RT to 500 °C). While the X-ray diffractometer (XRD) analysis revealed that the Y/Sialon target has ß phase, the XRD of the fabricated films showed no diffraction peaks and thus confirming the amorphous nature of fabricated thin films. XRD analysis displayed that the fabricated thin films were amorphous while the transparency, measured by UV-vis spectroscopy, of the films, decreased with increasing substrate temperature, which was attributed to a change in film thickness with deposition temperature. X-ray photoelectron spectroscopy (XPS) results suggested that the synthesized Y/Sialon thin films are nearly homogenous and contained all target's elements. A scratch test revealed that both 300 and 500 °C coatings possess the tough and robust nature of the film, which can resist much harsh loads and shocks. These results pave the way to fabricate different Sialon doped materials for numerous applications.

6.
J Colloid Interface Sci ; 392: 325-330, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23200349

RESUMO

The work presented here deals with the photoreduction in metallic silver nanoparticles onto the surface of Ag(3)PO(4) and resulting photocatalytic activity enhancement toward degradation of dye molecules, namely Rhodamine B (Rh. B) as a model compound, from aqueous solution under UV or visible light irradiation. Our results clearly indicated that the photoactivity of Ag(3)PO(4) was significantly enhanced by depositing an optimum amount of silver nanoparticles, even though the adsorption kinetics rate and capacity decreased after the silver nanoparticles agglomerate extensively. The surface plasmon resonance (SPR) excited between the silver nanoparticles and Rh. B interface is a physical origin and responsible for the boosted photoactivity, which strongly depends on the specific wavelength of the incident light. This work provides and suggests a novel scheme for Ag/Ag(3)PO(4) composites having plasmonic effect on the interface with detailed experimental and theoretical study.


Assuntos
Fosfatos/química , Compostos de Prata/química , Prata/química , Adsorção , Cinética , Luz , Processos Fotoquímicos , Rodaminas/química , Propriedades de Superfície , Raios Ultravioleta
7.
Appl Opt ; 50(20): 3488-96, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743558

RESUMO

The presence of chloride in reinforced concrete can cause severe damage to the strength and durability of buildings and bridges. The detection of chloride in concrete structures at early stages of the corrosion buildup process is, therefore, very important. However, detection of chlorine in trace amounts in concrete is not a simple matter. A dual-pulsed laser-induced breakdown spectrometer (LIBS) has been developed at our laboratory for the detection of chloride contents in reinforced concrete by using two atomic transition lines of neutral chlorine (Cl I) at 594.8 and 837.5 nm. A calibration curve was also established by using standard samples containing chloride in known concentration in the concrete. Our dual-pulsed LIBS system demonstrated a substantial improvement in the signal level at both wavelengths (594.8 and 837.5 nm). However, the new atomic transition line at 594.8 nm shows a significant improvement compared to the line at 837.5 nm in spite of the fact that the relative intensity of the former is 0.1% of the latter. This weak signal level of the 837.5 nm transition line of chlorine can be attributed to some kind of self-absorption process taking place in the case of the concrete sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...